Deep multiple instance learning for foreground speech localization in ambient audio from wearable devices

Author:

Hebbar RajatORCID,Papadopoulos Pavlos,Reyes Ramon,Danvers Alexander F.,Polsinelli Angelina J.,Moseley Suzanne A.,Sbarra David A.,Mehl Matthias R.,Narayanan Shrikanth

Abstract

AbstractOver the recent years, machine learning techniques have been employed to produce state-of-the-art results in several audio related tasks. The success of these approaches has been largely due to access to large amounts of open-source datasets and enhancement of computational resources. However, a shortcoming of these methods is that they often fail to generalize well to tasks from real life scenarios, due to domain mismatch. One such task is foreground speech detection from wearable audio devices. Several interfering factors such as dynamically varying environmental conditions, including background speakers, TV, or radio audio, render foreground speech detection to be a challenging task. Moreover, obtaining precise moment-to-moment annotations of audio streams for analysis and model training is also time-consuming and costly. In this work, we use multiple instance learning (MIL) to facilitate development of such models using annotations available at a lower time-resolution (coarsely labeled). We show how MIL can be applied to localize foreground speech in coarsely labeled audio and show both bag-level and instance-level results. We also study different pooling methods and how they can be adapted to densely distributed events as observed in our application. Finally, we show improvements using speech activity detection embeddings as features for foreground detection.

Funder

Hopelab Small Grant

National Institutes of Health

Mind and Life Institute

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3