A unit selection text-to-speech-and-singing synthesis framework from neutral speech: proof of concept

Author:

Freixes MarcORCID,Alías Francesc,Socoró Joan Claudi

Abstract

AbstractText-to-speech (TTS) synthesis systems have been widely used in general-purpose applications based on the generation of speech. Nonetheless, there are some domains, such as storytelling or voice output aid devices, which may also require singing. To enable a corpus-based TTS system to sing, a supplementary singing database should be recorded. This solution, however, might be too costly for eventual singing needs, or even unfeasible if the original speaker is unavailable or unable to sing properly. This work introduces a unit selection-based text-to-speech-and-singing (US-TTS&S) synthesis framework, which integrates speech-to-singing (STS) conversion to enable the generation of both speech and singing from an input text and a score, respectively, using the same neutral speech corpus. The viability of the proposal is evaluated considering three vocal ranges and two tempos on a proof-of-concept implementation using a 2.6-h Spanish neutral speech corpus. The experiments show that challenging STS transformation factors are required to sing beyond the corpus vocal range and/or with notes longer than 150 ms. While score-driven US configurations allow the reduction of pitch-scale factors, time-scale factors are not reduced due to the short length of the spoken vowels. Moreover, in the MUSHRA test, text-driven and score-driven US configurations obtain similar naturalness rates of around 40 for all the analysed scenarios. Although these naturalness scores are far from those of vocaloid, the singing scores of around 60 which were obtained validate that the framework could reasonably address eventual singing needs.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hybrid CNN-LSTM model with adaptive instance normalization for one shot singing voice conversion;AIMS Electronics and Electrical Engineering;2024

2. Multi-Voice Singing Synthesis From Lyrics;Circuits, Systems, and Signal Processing;2022-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3