High glucose upregulates connective tissue growth factor expression in human vascular smooth muscle cells

Author:

Liu Xiaojing,Luo Fengming,Pan Kejian,Wu Wenchao,Chen Huaiqing

Abstract

Abstract Background Connective tissue growth factor (CTGF) is a potent profibrotic factor, which is implicated in fibroblast proliferation, angiogenesis and extracellular matrix (ECM) synthesis. It is a downstream mediator of some of the effects of transforming growth factor β (TGFβ) and is potentially induced by hyperglycemia in human renal mesangial cells. However, whether high glucose could induce the CTGF expression in vascular smooth muscle cells (VSMCs) remains unknown. Therefore, this study was designed to test whether high glucose could regulate CTGF expression in human VSMC. The effect of modulating CTGF expression on VSMC proliferation and migration was further investigated. Results Expression of CTGF mRNA was up-regulated as early as 6 hours in cultured human VSMCs after exposed to high glucose condition, followed by ECM components (collagen type I and fibronectin) accumulation. The upregulation of CTGF mRNA appears to be TGFβ-dependent since anti-TGFβ antibody blocks the effect of high glucose on CTGF gene expression. A small interference RNA (siRNA) targeting CTGF mRNA (CTGF-siRNA) effectively suppressed CTGF up-regulation stimulated by high glucose up to 79% inhibition. As a consequence of decreased expression of CTGF gene, the deposition of ECM proteins in the VSMC was also declined. Moreover, CTGF-siRNA expressing vector partially inhibited the high glucose-induced VSMC proliferation and migration. Conclusion Our data suggest that in the development of macrovascular complications in diabetes, CTGF might be an important factor involved in the patho-physiological responses to high glucose in human VSMCs. In addition, the modulatory effects of CTGF-siRNA during this process suggest that specific targeting CTGF by RNA interference could be useful in preventing intimal hyperplasia in diabetic macrovascular complications.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3