Author:
Pagán-Mercado Glorivee,Santiago-Cartagena Ednalise,Akamine Pearl,Rodríguez-Medina José R
Abstract
Abstract
Background
Yeast has numerous mechanisms to survive stress. Deletion of myosin type II (myo1Δ) in Saccharomyces cerevisiae results in a cell that has defective cytokinesis. To survive this genetically induced stress, this budding yeast up regulates the PKC1 cell wall integrity pathway (CWIP). More recently, our work indicated that TOR, another stress signaling pathway, was down regulated in myo1Δ strains. Since negative signaling by TOR is known to regulate PKC1, our objectives in this study were to understand the cross-talk between the TOR and PKC1 signaling pathways and to determine if they share upstream regulators for mounting the stress response in myo1Δ strains.
Results
Here we proved that TORC1 signaling was down regulated in the myo1Δ strain. While a tor1 Δ mutant strain had increased viability relative to myo1Δ, a combined myo1Δtor1 Δ mutant strain showed significantly reduced cell viability. Synthetic rescue of the tor2-21
ts
lethal phenotype was observed in the myo1Δ strain in contrast to the chs2 Δ strain, a chitin synthase II null mutant that also activates the PKC1 CWIP and exhibits cytokinesis defects very similar to myo1Δ, where the rescue effect was not observed. We observed two pools of Slt2p, the final Mitogen Activated Protein Kinase (MAPK) of the PKC1 CWIP; one pool that is up regulated by heat shock and one that is up regulated by the myo1Δ stress. The cell wall stress sensor WSC1 that activates PKC1 CWIP under other stress conditions was shown to act as a negative regulator of TORC1 in the myo1Δ mutant. Finally, the repression of TORC1 was inversely correlated with the activation of PKC1 in the myo1Δ strain.
Conclusions
Regulated expression of TOR1 was important in the activation of the PKC1 CWIP in a myo1Δ strain and hence its survival. We found evidence that the PKC1 and TORC1 pathways share a common upstream regulator associated with the cell wall stress sensor WSC1. Surprisingly, essential TORC2 functions were not required in the myo1Δ strain. By understanding how yeast mounts a concerted stress response, one can further design pharmacological cocktails to undermine their ability to adapt and to survive.
Publisher
Springer Science and Business Media LLC
Reference69 articles.
1. Kamada Y, Jung US, Piotrowski J, Levin DE: The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev. 1995, 9: 1559-1571. 10.1101/gad.9.13.1559.
2. Gray JV, Ogas JP, Kamada Y, Stone M, Levin DE, Herskowitz I: A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J. 1997, 16: 4924-4937. 10.1093/emboj/16.16.4924.
3. de Nobel H, Ruiz C, Martin H, Morris W, Brul S, Molina M, Klis FM: Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2-lacZ expression, glucanase resistance and thermotolerance. Microbiology. 2000, 146 (Pt 9): 2121-2132.
4. Rodriguez-Quiñones JF, Irizarry RA, Díaz-Blanco N, Rivera-Molina FE, Garzón-Gómez D, Rodriguez-Medina JR: Global mRNA expression analysis in myosin II deficient strains of Saccharomyces cerevisiae reveals an impairment of cell integrity functions. BMC Genomics. 2008, 9: 1-10. 10.1186/1471-2164-9-1.
5. Rodriguez-Quiñones JF, Rodríguez-Medina JR: Differential gene expression signatures for cell wall integrity found in chitin synthase II (chs2delta) and myosin II (myo1delta) deficient cytokinesis mutants of Saccharomyces cerevisiae. BMC Res Notes. 2009, 2 (87): 1-7.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献