Author:
George Manju,Ying GuoGuang,Rainey Mark A,Solomon Aharon,Parikh Pankit T,Gao Qingshen,Band Vimla,Band Hamid
Abstract
Abstract
Background
The four highly homologous human EHD proteins (EHD1-4) form a distinct subfamily of the Eps15 homology domain-containing protein family and are thought to regulate endocytic recycling. Certain members of this family have been studied in different cellular contexts; however, a lack of concurrent analyses of all four proteins has impeded an appreciation of their redundant versus distinct functions.
Results
Here, we analyzed the four EHD proteins both in mammalian cells and in a cross-species complementation assay using a C. elegans mutant lacking the EHD ortholog RME-1. We show that all human EHD proteins rescue the vacuolated intestinal phenotype of C. elegans rme-1 mutant, are simultaneously expressed in a panel of mammalian cell lines and tissues tested, and variably homo- and hetero-oligomerize and colocalize with each other and Rab11, a recycling endosome marker. Small interfering RNA (siRNA) knock-down of EHD1, 2 and 4, and expression of dominant-negative EH domain deletion mutants showed that loss of EHD1 and 3 (and to a lesser extent EHD4) but not EHD2 function retarded transferrin exit from the endocytic recycling compartment. EH domain deletion mutants of EHD1 and 3 but not 2 or 4, induced a striking perinuclear clustering of co-transfected Rab11. Knock-down analyses indicated that EHD1 and 2 regulate the exit of cargo from the recycling endosome while EHD4, similar to that reported for EHD3 (Naslavsky et al. (2006) Mol. Biol. Cell 17, 163), regulates transport from the early endosome to the recycling endosome.
Conclusion
Altogether, our studies suggest that concurrently expressed human EHD proteins perform shared as well as discrete functions in the endocytic recycling pathway and lay a foundation for future studies to identify and characterize the molecular pathways involved.
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. Mellman I: Endocytosis and molecular sorting. Annu Rev Cell Dev Biol. 1996, 12: 575-625. 10.1146/annurev.cellbio.12.1.575.
2. Fazioli F, Minichiello L, Matoskova B, Wong WT, Di Fiore PP: eps15, a novel tyrosine kinase substrate, exhibits transforming activity. Mol Cell Biol. 1993, 13: 5814-5828.
3. Wong WT, Kraus MH, Carlomagno F, Zelano A, Druck T, Croce CM, Huebner K, Di Fiore PP: The human eps15 gene, encoding a tyrosine kinase substrate, is conserved in evolution and maps to 1p31-p32. Oncogene. 1994, 9: 1591-1597.
4. Confalonieri S, Di Fiore PP: The Eps15 homology (EH) domain. FEBS Lett. 2002, 513: 24-29. 10.1016/S0014-5793(01)03241-0.
5. Santolini E, Salcini AE, Kay BK, Yamabhai M, Di Fiore PP: The EH network. Exp Cell Res. 1999, 253: 186-209. 10.1006/excr.1999.4694.
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献