Abstract
Abstract
Background
Ground-level ozone (O3) pollution is currently the one of the severe environmental problems in China. Although existing studies have quantified the O3-related health impact and economic loss, few have focused on the acute health effects of short-term exposure to O3 and have been limited to a single temporal and spatial dimension.
Methods
Based on the O3 concentration obtained from ground monitoring networks in 334 Chinese cities in 2015–2018, this study used a two-stage exposure parameter weighted Log-linear exposure-response function to estimate the cause-specific mortality for short-term exposure to O3.
Results
The value of statistical life (VSL) method that were used to calculate the economic loss at the city-level. Our results show that in China, the national all-cause mortality attributed to O3 was 0.27(95% CI: 0.14–0.55) to 0.39 (95% CI: 0.20–0.67) million across 2015–2018. The estimated economic loss caused by O3 was 387.76 (95% CI: 195.99–904.50) to 594.08 (95% CI: 303.34–1140.65) billion CNY, accounting for 0.52 to 0.69% of total reported GDP. Overall, the O3 attributed health and economic burden has begun to decline in China since 2017. However, highly polluted areas still face severe burden, and undeveloped areas suffer from high GDP losses.
Conclusions
There are substantial health impacts and economic losses related to short-term O3 exposure in China. The government should pay attention to the emerging ozone pollution, and continue to strengthen the intervention in traditional priority areas while solving the pollution problem in non-priority areas.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Science and Technology Research Projects of Sichuan Province
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health
Reference112 articles.
1. USEPA. Air quality criteria for ozone and related photochemical oxidants. In: vol. 1: EPA Research Triangle Park, NC; 2006. p. 821.
2. USEPA: Integrated science assessment for ozone and related photochemical oxidants. 2013.
3. Sakizadeh M, Mohamed MM. Application of spatial analysis to investigate contribution of VOCs to photochemical ozone creation. Environ Sci Pollut Res Int. 2020;27:10459–71.
4. Bernard SM, Samet JM, Grambsch A, Ebi KL, Romieu I. The potential impacts of climate variability and change on air pollution-related health effects in the United States. Environ Health Perspect. 2001;109(suppl 2):199–209.
5. Penrod A, Zhang Y, Wang K, Wu S-Y, Leung LR. Impacts of future climate and emission changes on U.S. air quality. Atmos Environ. 2014;89:533–47.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献