Tropospheric Ozone: A Critical Review of the Literature on Emissions, Exposure, and Health Effects

Author:

Donzelli Gabriele12ORCID,Suarez-Varela Maria Morales23ORCID

Affiliation:

1. Institute of Clinical Physiology of the National Research Council (CNR-IFC), 56124 Pisa, Italy

2. Research Group in Social and Nutritional Epidemiology, Pharmacoepidemiology and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estelles s/n, Burjassot, 46100 Valencia, Spain

3. Biomedical Research Center in Epidemiology and Public Health Network (CIBERESP), Carlos III Health Institute, Av. Monforte de Lemos 3-5 Pabellón 11 Planta 0, 28029 Madrid, Spain

Abstract

Tropospheric ozone is a significant air pollutant with severe adverse effects on human health. The complex dynamics of ozone formation, distribution, and health impacts underscore the need for a comprehensive understanding of this pollutant. Despite well-documented health risks, including an estimated 423,100 deaths annually due to ozone exposure, millions of people in major countries continue to be exposed to unhealthy levels. Notably, the epidemiological evidence linking long-term ozone exposure to health outcomes is limited compared to short-term exposure studies, leaving some findings incomplete. Regulatory standards vary globally, with the implementation of the World Health Organization recommendation for an 8-h average limit of 50 ppb to protect public health remaining heterogeneous, leading to significant disparities in adoption across countries, and often significantly higher. Emissions from diesel and gasoline vehicles are major sources of VOCs and NOx in urban areas, and their reduction is a key strategy. Additionally, climate change may exacerbate ozone pollution through increased natural precursor emissions, leading to higher ground-level ozone in polluted regions, like the eastern US, southern Europe, and parts of Asia. Addressing tropospheric ozone effectively requires an integrated approach that considers both natural and anthropogenic sources to reduce concentrations and mitigate health impacts.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Environmental and Ecological Advantages and Disadvantages of Direct CO2 Conversion to Methanol;Reference Module in Chemistry, Molecular Sciences and Chemical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3