Author:
Delavar Mouloud Agajani,Jahani Mohammad ali,Sepidarkish Mahdi,Alidoost Saeide,Mehdinezhad Hamed,Farhadi Zeynab
Abstract
Abstract
Background
Short-term exposure to PM2.5 has been associated with human health risks. However, evidence on the association between short-term exposure to PM2.5 and the risk of chronic obstructive pulmonary disease (COPD) remains limited and controversial. This study aimed to specifically assess the relationship between exposure to PM2.5 and the risk of hospitalization due to COPD.
Methods
A systematic search was conducted in PubMed, Web of Science, and Google Scholar databases from January 1, 2010 to May 1, 2022. The odds ratio (OR) statistic was calculated as a common measure of effect size. Publication bias was also examined in all eligible studies on COPD hospitalization using funnel plots and Egger’s test, as well as trim-and-fill method for missing studies on COPD hospitalization.
Results
A total of 19 studies were included in this meta-analysis. Random-effects models were plotted to calculate the pooled effect size by measuring OR (χ2 = 349.95; df = 18; I2 = 94.86%; P = 0.007; Z = 2.68; P < 0.001). A 10-mg/m3 daily increase in PM2.5 concentration was associated with a 1.6% (95% CI: 0.4–2.9%) increase in COPD hospitalization. There was no publication bias regarding the association between COPD hospitalization and PM2.5 (bias = 1.508; 95% CI: -1.475, 4.491; t = 1.066; P = 0.301). The subgroups of age ≥ 65 years and Asian countries were associated with an increased risk of COPD hospitalization. Besides, higher risks were estimated in the subgroups of studies performed in the warm season, case-crossover studies, studies with three lag days, and studies without adjustments for humidity and temperature confounders, with very small heterogeneity.
Conclusion
Evidence suggests that short-term exposure to PM2.5 increases COPD hospitalization. Further studies are needed to understand the mechanism of the association between PM2.5 and COPD for reducing air pollution, which can be beneficial for COPD patients.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health
Reference49 articles.
1. Soriano JB, Kendrick PJ, Paulson KR, Gupta V, Abrams EM, Adedoyin RA, et al. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med. 2020;8(6):585–96.
2. World Health Organization. Causes Chronic obstructive pulmonary disease(COPD).review due: 20 September 2022. Available at: https://www.nhs.uk/conditions/chronic-obstructive-pulmonary-disease-copd/causes/. November 29, 2022.
3. Lortet-Tieulent J, Soerjomataram I, López-Campos JL, Ancochea J, Coebergh JW, Soriano JB. International trends in COPD mortality, 1995–2017. Eur Respir J. 2019;54(6).
4. Postma DS, Bush A, van den Berge M. Risk factors and early origins of chronic obstructive pulmonary disease. Lancet. 2015;385(9971):899–909.
5. Alahmad B, Al-Hemoud A, Kang C-M, Almarri F, Kommula V, Wolfson JM, et al. A two-year assessment of particulate air pollution and sources in Kuwait. Environ Pollut. 2021;282: 117016.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献