Evaluation of Deep Learning Models for Predicting the Concentration of Air Pollutants in Urban Environments

Author:

Tello-Leal Edgar1ORCID,Ramirez-Alcocer Ulises Manuel2ORCID,Macías-Hernández Bárbara A.1ORCID,Hernandez-Resendiz Jaciel David2ORCID

Affiliation:

1. Faculty of Engineering and Science, Autonomous University of Tamaulipas, Victoria 87000, Mexico

2. Multidisciplinary Academic Unit Reynosa-Rodhe, Autonomous University of Tamaulipas, Reynosa 88779, Mexico

Abstract

Air pollution is an issue of great concern globally due to the risks to the health of humanity, animals, and ecosystems. On the one hand, air quality monitoring systems allow for determining the concentration level of air pollutants and health risks through an air quality index (AQI). On the other hand, accurate future predictions of air pollutant concentration levels can provide valuable information for data-driven decision-making to reduce health risks from short- and long-term exposure when indicators exceed permissible limits. In this paper, five deep learning architectures are evaluated to predict the concentration of particulate matter pollutants (in their fractions PM2.5 and PM10) and carbon monoxide (CO) in consecutive hours. The proposed prediction models are based on recurrent neural networks (RNNs), long short-term memory (LSTM), vanilla LSTM, Stacked LSTM, Bi-LSTM, and encoder–decoder LSTM networks. Moreover, a methodology is presented to guide the construction of the prediction model, encompassing raw data processing, model design and optimization, and neural network training, testing, and evaluation. The results underscore the precision and reliability of the Stacked LSTM model in predicting the hourly concentration level for PM2.5, with an RMSE of 3.4538 μg/m3. Similarly, the encoder–decoder LSTM model accurately predicts the concentration level for PM10 and CO, with an RMSE of 3.2606 μg/m3 and 2.1510 ppm, respectively. These evaluations, with their minimal differences in error metrics and coefficient of determination, validate the effectiveness and superiority of the deep learning models over other reference models, instilling confidence in their potential.

Funder

Consejo Nacional de Ciencia y Tecnología (CONACYT) of México

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3