Using prediction polling to harness collective intelligence for disease forecasting

Author:

Sell Tara KirkORCID,Warmbrod Kelsey Lane,Watson Crystal,Trotochaud Marc,Martin Elena,Ravi Sanjana J.,Balick Maurice,Servan-Schreiber Emile

Abstract

Abstract Background The global spread of COVID-19 has shown that reliable forecasting of public health related outcomes is important but lacking. Methods We report the results of the first large-scale, long-term experiment in crowd-forecasting of infectious-disease outbreaks, where a total of 562 volunteer participants competed over 15 months to make forecasts on 61 questions with a total of 217 possible answers regarding 19 diseases. Results Consistent with the “wisdom of crowds” phenomenon, we found that crowd forecasts aggregated using best-practice adaptive algorithms are well-calibrated, accurate, timely, and outperform all individual forecasters. Conclusions Crowd forecasting efforts in public health may be a useful addition to traditional disease surveillance, modeling, and other approaches to evidence-based decision making for infectious disease outbreaks.

Funder

Open Philanthropy Project

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Reference23 articles.

1. Harmon K. Advances in disease surveillance: putting the “public” into public health. Sci Am. 2010. https://blogs.scientificamerican.com/observations/advances-in-disease-surveillance-putting-the-public-into-public-health/

2. Jajosky RA, Groseclose S. Evaluation of reporting timeliness of public health surveillance systems for infectious diseases. BMC Public Health. 2004;4(29, 1). https://doi.org/10.1186/1471-2458-4-29.

3. Giles J. Wisdom of the crowd. Nature. 2005;438(281, 7066). https://doi.org/10.1038/438281a.

4. Berg J, Rietz T. Prediction markets as decision support systems. Inf Syst Front. 2003;5(1):79–93. https://doi.org/10.1023/A:1022002107255.

5. Forsythe R, Nelson FD, Neumann GR, Wright J. Anatomy of an experimental political stock market. Am Econ Rev. 1992;82:1142–61.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3