Collective Intelligence–Based Participatory COVID-19 Surveillance in Accra, Ghana: Pilot Mixed Methods Study (Preprint)

Author:

Marley GiftyORCID,Dako-Gyeke PhyllisORCID,Nepal PrajwolORCID,Rajgopal RohiniORCID,Koko EvelynORCID,Chen ElizabethORCID,Nuamah KwabenaORCID,Osei KingsleyORCID,Hofkirchner HubertusORCID,Marks MichaelORCID,Tucker Joseph DORCID,Eggo RosalindORCID,Ampofo WilliamORCID,Sylvia SeanORCID

Abstract

BACKGROUND

Infectious disease surveillance is difficult in many low- and middle-income countries. Information market (IM)–based participatory surveillance is a crowdsourcing method that encourages individuals to actively report health symptoms and observed trends by trading web-based virtual “stocks” with payoffs tied to a future event.

OBJECTIVE

This study aims to assess the feasibility and acceptability of a tailored IM surveillance system to monitor population-level COVID-19 outcomes in Accra, Ghana.

METHODS

We designed and evaluated a prediction markets IM system from October to December 2021 using a mixed methods study approach. Health care workers and community volunteers aged ≥18 years living in Accra participated in the pilot trading. Participants received 10,000 virtual credits to trade on 12 questions on COVID-19–related outcomes. Payoffs were tied to the cost estimation of new and cumulative cases in the region (Greater Accra) and nationwide (Ghana) at specified future time points. Questions included the number of new COVID-19 cases, the number of people likely to get the COVID-19 vaccination, and the total number of COVID-19 cases in Ghana by the end of the year. Phone credits were awarded based on the tally of virtual credits left and the participant’s percentile ranking. Data collected included age, occupation, and trading frequency. In-depth interviews explored the reasons and factors associated with participants’ user journey experience, barriers to system use, and willingness to use IM systems in the future. Trading frequency was assessed using trend analysis, and ordinary least squares regression analysis was conducted to determine the factors associated with trading at least once.

RESULTS

Of the 105 eligible participants invited, 21 (84%) traded at least once on the platform. Questions estimating the national-level number of COVID-19 cases received 13 to 19 trades, and obtaining COVID-19–related information mainly from television and radio was associated with less likelihood of trading (marginal effect: −0.184). Individuals aged <30 years traded 7.5 times more and earned GH ¢134.1 (US $11.7) more in rewards than those aged >30 years (marginal effect: 0.0135). Implementing the IM surveillance was feasible; all 21 participants who traded found using IM for COVID-19 surveillance acceptable. Active trading by friends with communal discussion and a strong onboarding process facilitated participation. The lack of bidirectional communication on social media and technical difficulties were key barriers.

CONCLUSIONS

Using an IM system for disease surveillance is feasible and acceptable in Ghana. This approach shows promise as a cost-effective source of information on disease trends in low- and middle-income countries where surveillance is underdeveloped, but further studies are needed to optimize its use.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3