Development and internal validation of risk prediction model of metabolic syndrome in oil workers

Author:

Wang Jie,Li Chao,Li Jing,Qin Sheng,Liu Chunlei,Wang Jiaojiao,Chen Zhe,Wu Jianhui,Wang Guoli

Abstract

Abstract Background The prevalence of metabolic syndrome continues to rise sharply worldwide, seriously threatening people’s health. The optimal model can be used to identify people at high risk of metabolic syndrome as early as possible, to predict their risk, and to persuade them to change their adverse lifestyle so as to slow down and reduce the incidence of metabolic syndrome. Methods Design existing circumstances research. A total of 1468 workers from an oil company who participated in occupational health physical examination from April 2017 to October 2018 were included in this study. We established the Logistic regression model, the random forest model and the convolutional neural network model, and compared the prediction performance of the models according to the F1 score, sensitivity, accuracy and other indicators of the three models. Results The results showed that the accuracy of the three models was 82.49,95.98 and 92.03%, the sensitivity was 87.94,95.52 and 90.59%, the specificity was 74.54, 96.65 and 94.14%, the F1 score was 0.86,0.97 and 0.93, and the area under ROC curve was 0.88,0.96 and 0.92, respectively. The Brier score of the three models was 0.15, 0.08 and 0.12, Observed-expected ratio was 0.83, 0.97 and 1.13, and the Integrated Calibration Index was 0.075,0.073 and 0.074, respectively, and explained how the random forest model was used for individual disease risk score. Conclusions The study showed that the prediction performance of random forest model is better than other models, and the model has higher application value, which can better predict the risk of metabolic syndrome in oil workers, and provide corresponding theoretical basis for the health management of oil workers.

Funder

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Reference42 articles.

1. Li W, Song F, Wang X, et al. Relationship between metabolic syndrome and its components and cardiovascular disease in middle-aged and elderly Chinese population: a national cross-sectional survey. BMJ Open. 2019;9(8):e27545.

2. Low S, Khoo K, Wang J, et al. Development of a metabolic syndrome severity score and its association with incident diabetes in an Asian population—results from a longitudinal cohort in Singapore. Endocrine. 2019;65(1):73–80.

3. Chen J, Kong X, Jia X, et al. Association between metabolic syndrome and chronic kidney disease in a Chinese urban population. Clin Chim Acta. 2017;470:103–8.

4. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53.

5. Kuhar MB. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). Circulation. 2001;106(25):2486–97.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3