Development and Internal Validation of Risk Assessment Models for Chronic Obstructive Pulmonary Disease in Coal Workers

Author:

Wang Hui1,Meng Rui1,Wang Xuelin1,Si Zhikang1,Zhao Zekun1,Lu Haipeng1,Wang Huan1,Hu Jiaqi1,Zheng Yizhan1,Chen Jiaqi1,Zheng Ziwei1ORCID,Chen Yuanyu1,Yang Yongzhong1,Li Xiaoming1,Xue Ling1,Sun Jian1,Wu Jianhui1

Affiliation:

1. School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan 063210, China

Abstract

Coal workers are more likely to develop chronic obstructive pulmonary disease due to exposure to occupational hazards such as dust. In this study, a risk scoring system is constructed according to the optimal model to provide feasible suggestions for the prevention of chronic obstructive pulmonary disease in coal workers. Using 3955 coal workers who participated in occupational health check-ups at Gequan mine and Dongpang mine of Hebei Jizhong Energy from July 2018 to August 2018 as the study subjects, random forest, logistic regression, and convolutional neural network models are established, and model performance is evaluated to select the optimal model, and finally a risk scoring system is constructed according to the optimal model to achieve model visualization. The training set results show that the logistic, random forest, and CNN models have sensitivities of 78.55%, 86.89%, and 77.18%; specificities of 85.23%, 92.32%, and 87.61%; accuracies of 81.21%, 85.40%, and 83.02%; Brier scores of 0.14, 0.10, and 0.14; and AUCs of 0.76, 0.88, and 0.78, respectively, and similar results are obtained for the test set and validation set, with the random forest model outperforming the other two models. The risk scoring system constructed according to the importance ranking of random forest predictor variables has an AUC of 0.842; the evaluation results of the risk scoring system shows that its accuracy rate is 83.7% and the AUC is 0.827, and the established risk scoring system has good discriminatory ability. The random forest model outperforms the CNN and logistic regression models. The chronic obstructive pulmonary disease risk scoring system constructed based on the random forest model has good discriminatory power.

Funder

Youth Talent Promotion Program of School of Public Health, North China University of Science and Technology

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3