Author:
Chen Tom,Li Wenjun,Zambarano Bob,Klompas Michael
Abstract
Abstract
Background
Electronic Health Record (EHR) data are increasingly being used to monitor population health on account of their timeliness, granularity, and large sample sizes. While EHR data are often sufficient to estimate disease prevalence and trends for large geographic areas, the same accuracy and precision may not carry over for smaller areas that are sparsely represented by non-random samples.
Methods
We developed small-area estimation models using a combination of EHR data drawn from MDPHnet, an EHR-based public health surveillance network in Massachusetts, the American Community Survey, and state hospitalization data. We estimated municipality-specific prevalence rates of asthma, diabetes, hypertension, obesity, and smoking in each of the 351 municipalities in Massachusetts in 2016. Models were compared against Behavioral Risk Factor Surveillance System (BRFSS) state and small area estimates for 2016.
Results
Integrating progressively more variables into prediction models generally reduced mean absolute error (MAE) relative to municipality-level BRFSS small area estimates: asthma (2.24% MAE crude, 1.02% MAE modeled), diabetes (3.13% MAE crude, 3.48% MAE modeled), hypertension (2.60% MAE crude, 1.48% MAE modeled), obesity (4.92% MAE crude, 4.07% MAE modeled), and smoking (5.33% MAE crude, 2.99% MAE modeled). Correlation between modeled estimates and BRFSS estimates for the 13 municipalities in Massachusetts covered by BRFSS’s 500 Cities ranged from 81.9% (obesity) to 96.7% (diabetes).
Conclusions
Small-area estimation using EHR data is feasible and generates estimates comparable to BRFSS state and small-area estimates. Integrating EHR data with survey data can provide timely and accurate disease monitoring tools for areas with sparse data coverage.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health
Reference18 articles.
1. Kim RS, Shankar V. Prevalence estimation by joint use of big data and health survey: a demonstration study using electronic health records in New York city. BMC Med Res Methodol. 2020;20:1–10.
2. Perlman SE, McVeigh KH, Thorpe LE, Jacobson L, Greene CM, Gwynn RC. Innovations in population health surveillance: using electronic health Records for Chronic Disease Surveillance. Am J Public Health. 2017;107(6):853–7.
3. Chicago Health Atlas. http://www.chicagohealthatlas.org/. Accessed 10 Jan 2021.
4. Newton-Dame R, McVeigh KH, Schreibstein L, et al. Design of the New York City Macroscope: innovations in population health surveillance using electronic health records. EGEMS (Wash DC). 2016;4(1):1265.
5. Vogel J, Brown JS, Land T, Platt R, Klompas M. MDPHnet: secure, distributed sharing of electronic health record data for public health surveillance, evaluation, and planning. Am J Public Health. 2014;104(12):2265–70.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献