Evaluation of the pilot wastewater surveillance for SARS-CoV-2 in Norway, June 2022 – March 2023

Author:

Amato Ettore,Hyllestad Susanne,Heradstveit Petter,Langlete Petter,Moen Line Victoria,Rohringer Andreas,Pires João,Baz Lomba Jose Antonio,Bragstad Karoline,Feruglio Siri Laura,Aavitsland Preben,Madslien Elisabeth Henie

Abstract

Abstract Background During the COVID-19 pandemic, wastewater-based surveillance gained great international interest as an additional tool to monitor SARS-CoV-2. In autumn 2021, the Norwegian Institute of Public Health decided to pilot a national wastewater surveillance (WWS) system for SARS-CoV-2 and its variants between June 2022 and March 2023. We evaluated the system to assess if it met its objectives and its attribute-based performance. Methods We adapted the available guidelines for evaluation of surveillance systems. The evaluation was carried out as a descriptive analysis and consisted of the following three steps: (i) description of the WWS system, (ii) identification of users and stakeholders, and (iii) analysis of the system’s attributes and performance including sensitivity, specificity, timeliness, usefulness, representativeness, simplicity, flexibility, stability, and communication. Cross-correlation analysis was performed to assess the system’s ability to provide early warning signal of new wave of infections. Results The pilot WWS system was a national surveillance system using existing wastewater infrastructures from the largest Norwegian municipalities. We found that the system was sensitive, timely, useful, representative, simple, flexible, acceptable, and stable to follow the general trend of infection. Preliminary results indicate that the system could provide an early signal of changes in variant distribution. However, challenges may arise with: (i) specificity due to temporary fluctuations of RNA levels in wastewater, (ii) representativeness when downscaling, and (iii) flexibility and acceptability when upscaling the system due to limited resources and/or capacity. Conclusions Our results showed that the pilot WWS system met most of its surveillance objectives. The system was able to provide an early warning signal of 1-2 weeks, and the system was useful to monitor infections at population level and complement routine surveillance when individual testing activity was low. However, temporary fluctuations of WWS values need to be carefully interpreted. To improve quality and efficiency, we recommend to standardise and validate methods for assessing trends of new waves of infection and variants, evaluate the WWS system using a longer operational period particularly for new variants, and conduct prevalence studies in the population to calibrate the system and improve data interpretation.

Funder

Norwegian Institute of Public Health

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3