Cold waves and fine particulate matter in high-altitude Chinese cities: assessing their interactive impact on outpatient visits for respiratory disease

Author:

Ning Zhenxu,He Shuzhen,Liao Xinghao,Ma Chunguang,Wu Jing

Abstract

Abstract Background Extreme weather events like heatwaves and fine particulate matter (PM2.5) have a synergistic effect on mortality, but research on the synergistic effect of cold waves and PM2.5 on outpatient visits for respiratory disease, especially at high altitudes in climate change-sensitive areas, is lacking. Methods we collected time-series data on meteorological, air pollution, and outpatient visits for respiratory disease in Xining. We examined the associations between cold waves, PM2.5, and outpatient visits for respiratory disease using a time-stratified case-crossover approach and distributional lag nonlinear modeling. Our analysis also calculated the relative excess odds due to interaction (REOI), proportion attributable to interaction (AP), and synergy index (S). We additionally analyzed cold waves over time to verify climate change. Results Under different definitions of cold waves, the odds ratio for the correlation between cold waves and outpatient visits for respiratory disease ranged from 0.95 (95% CI: 0.86, 1.05) to 1.58 (1.47, 1.70). Exposure to PM2.5 was significantly associated with an increase in outpatient visits for respiratory disease. We found that cold waves can synergize with PM2.5 to increase outpatient visits for respiratory disease (REOI > 0, AP > 0, S > 1), decreasing with stricter definitions of cold waves and longer durations. Cold waves’ independent effect decreased over time, but their interaction effect persisted. From 8.1 to 21.8% of outpatient visits were due to cold waves and high-level PM2.5. People aged 0–14 and ≥ 65 were more susceptible to cold waves and PM2.5, with a significant interaction for those aged 15–64 and ≥ 65. Conclusion Our study fills the gap on how extreme weather and PM2.5 synergistically affect respiratory disease outpatient visits in high-altitude regions. The synergy of cold waves and PM2.5 increases outpatient visits for respiratory disease, especially in the elderly. Cold wave warnings and PM2.5 reduction have major public health benefits.

Funder

Science and Technology Project of Xining

Publisher

Springer Science and Business Media LLC

Reference62 articles.

1. Pörtner DCR H-O, Tignor M, Poloczanska ES, Mintenbeck K, Alegría A, Craig M, Langsdorf S, Löschke S, Möller V, Okem A, Rama B, editors. IPCC, 2022:Climate Change 2022: Impacts, Adaptation, and Vulnerability. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp 2022.

2. Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Charland A, Liu Y, Haugen M, Tsiang M, et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci U S A. 2017;114(19):4881–6.

3. Newman R, Noy I. The global costs of extreme weather that are attributable to climate change. Nat Commun. 2023;14(1):6103.

4. Burkart KG, Brauer M, Aravkin AY, Godwin WW, Hay SI, He J, Iannucci VC, Larson SL, Lim SS, Liu J, et al. Estimating the cause-specific relative risks of non-optimal temperature on daily mortality: a two-part modelling approach applied to the global burden of Disease Study. Lancet. 2021;398(10301):685–97.

5. Wong CM, Vichit-Vadakan N, Vajanapoom N, Ostro B, Thach TQ, Chau PY, Chan EK, Chung RY, Ou CQ, Yang L et al. Part 5. Public health and air pollution in Asia (PAPA): a combined analysis of four studies of air pollution and mortality. Res Rep Health Eff Inst 2010(154):377–418.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3