Country- and app-level factors affecting the adoption and evaluation of COVID-19 mobile apps

Author:

Wu Yi,Ye Qianying,Shen Fei,Zhang Zhian,Jiang Crystal Li

Abstract

Abstract Background Countries across the globe have released many COVID-19 mobile apps. However, there is a lack of systematic empirical investigation into the factors affecting the adoption and evaluation of COVID-related apps. This study explores what factors at the country level and the app levels would influence the adoption and evaluation of COVID-19 apps. Methods We collected data on 267 COVID-19 apps in App Store and Google Play. The number of installs, ratings, reviews and rating scores were used as indicators of adoption and evaluation. Country-level predictors include the number of infected cases and the political system (i.e., democratic vs. non-democratic). App-level predictors include developer (i.e., government vs. non-government) and functions. Four app functions were coded for analysis: providing health information, contact tracing, home monitoring, and consultation. Negative binomial regression and OLS (Ordinary Least Square) regression were used to analyze the data. Results Our analyses show that apps developed by countries with more infected cases (B = 0.079, CI (Confidence Interval) = 0.000, 0.158; P = .049) and by non-governmental institutions (B=-0.369, CI=-0.653, -0.083; P = .01) received more positive rating scores. Apps with home monitoring function received lower rating scores (B=-0.550, CI=-0.971, -0.129; P = .01). Regarding adoption, apps developed by governments were more likely to be installed (IRR (Incident Rate Ratio) = 8.156, CI = 3.389, 19.626; P < .001), to be rated (IRR = 26.036, CI = 7.331, 92.468; P < .001), and to receive user comments (IRR = 12.080, CI = 3.954, 37.568; p < .001). Apps with functions of contact tracing or consultation were more likely to be installed (IRR = 4.533, CI = 2.072, 9.918; p < .001; IRR = 4.885, CI = 1.970, 12.111; p < .001), to be rated (IRR = 11.634, CI = 3.486, 38.827; p < .001; IRR = 17.194, CI = 5.309, 55.680; p < .001), and to receive user comments (IRR = 5.688, CI = 2.052, 5.770; p < .001; IRR = 16.718, CI = 5.363, 52.113; p < .001). Apps with home monitoring functions were less likely to be rated (IRR = 0.206, CI = 0.047, 0.896; P = .04) but more likely to receive user comments (IRR = 3.874, CI = 1.044, 14.349; P = .04). Further analysis shows that apps developed in democratic countries (OR (Odd Ratio) = 3.650, CI = 1.238, 10.758; P = .02) or by governments (OR = 7.987, CI = 4.106, 15.534, P < .001) were more likely to include the function of contact tracing. Conclusion This study systematically investigates factors affecting the adoption and evaluation of COVID-19 apps. Evidence shows that government-developed apps and the inclusion of contact tracing and consultation app functions strongly predict app adoption.

Funder

This study was supported by the Fundamental Research Funds for the Central Universities, Sun Yat-sen University.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Reference38 articles.

1. Collado-Borrell R, Escudero-Vilaplana V, Calles A, Garcia-Martin E, Marzal-Alfaro B, Gonzalez-Haba E, et al. Oncology patient interest in the use of new technologies to manage their disease: cross-sectional survey. J Med Internet Res. 2018;20:e11006. https://doi.org/10.2196/11006.

2. Yasaka TM, Lehrich BM, Sahyouni R. Peer-to-peer contact tracing: development of a privacy-preserving smartphone app. JMIR MHealth UHealth. 2020;8:e18936. https://doi.org/10.2196/18936.

3. GSM Association. The mobile economy 2021. GSMA; 2021. https://www.gsma.com/mobileeconomy/wp-content/uploads/2021/07/GSMA_MobileEconomy2021_3.pdf. Accessed 16 June 2022.

4. Sydow L. The state of mobile in 2020 – The most important trends to know. In: data.ai. 2021. https://www.appannie.com/en/insights/market-data/state-of-mobile-2020/. Accessed 16 June 2022.

5. Chowdhury H, Field M, Murphy M. NHS contact tracing app: how does it work and when can you download it? In: The Telegraph. 2020. https://www.telegraph.co.uk/technology/2020/05/05/nhs-app-coronavirus-covid-contact-tracing/.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3