Author:
Cheng Xiao,Jia Xiupeng,Wang Chunnian,Zhou Shangyan,Chen Jiayi,Chen Lei,Chen Jinping
Abstract
Abstract
Background
Breast cancer is the most common tumor in women worldwide. Diabetes mellitus is a global chronic metabolic disease with increasing incidence. Diabetes mellitus has been reported to positively regulate the development of many tumors. However, the specific mechanism of hyperglycemic environment regulating breast cancer remains unclear. PFKFB3 (6-phosphofructose-2-kinase/fructose-2, 6-bisphosphatase 3) is a key regulatory factor of the glycolysis process in diabetes mellitus, as well as a promoter of breast cancer. So, we want to explore the potential link between PFKFB3 and the poor prognosis of breast cancer patients with hyperglycemia in this study.
Methods
Cell culture was utilized to construct different-glucose breast cancer cell lines. Immunohistochemistry was adopted to analyze the protein level of PFKFB3 in benign breast tissues, invasive ductal carcinoma with diabetes and invasive ductal carcinoma without diabetes. The Kaplan–Meier plotter database and GEO database (GSE61304) was adopted to analyze the survival of breast cancer patients with different PFKFB3 expression. Western blot was adopted to analyze the protein level of PFKFB3, epithelial–mesenchymal transition (EMT)-related protein and extracellular regulated protein kinases (ERK) in breast cancer cells. Gene Set Cancer Analysis (GSCA) was utilized to investigate the potential downstream signaling pathways of PFKFB3. TargetScan and OncomiR were utilized to explore the potential mechanism of PFKFB3 overexpression by hyperglycemia. Transfections (including siRNAs and miRNA transfection premiers) was utilized to restrain or mimic the expression of the corresponding RNA. Cell functional assays (including cell counting, MTT, colony formation, wound-healing, and cell migration assays) were utilized to explore the proliferation and migration of breast cancer cells.
Results
In this study, we demonstrated that the expression of PFKFB3 in breast cancer complicated with hyperglycemia was higher than that in breast cancer with euglycemia through cell experiment in vitro and histological experiment. PFKFB3 overexpression decreased the survival period of breast cancer patients and was correlated with a number of clinicopathological parameters of breast cancer complicated with diabetes. PFKFB3 promoted the proliferation and migration of breast cancer in a hyperglycemic environment and might be regulated by miR-26. In addition, PFKFB3 stimulated epithelial-mesenchymal transition of breast cancer in a hyperglycemic environment. In terms of downstream mechanism exploration, we predicted and verified the cancer-promoting effect of PFKFB3 in breast cancer complicated with hyperglycemia through RAS/MAPK pathway.
Conclusions
In conclusion, PFKFB3 could be overexpressed by hyperglycemia and might be a potential therapeutic target for breast cancer complicated with diabetes.
Funder
Medical science and technology program in Ningbo
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献