Characterization of zinc finger protein 536, a neuroendocrine regulator, using pan-cancer analysis

Author:

Zeng Longjin,Zhang Longyao,Yin Chenrui,Chen Xu,Chen Xiewan,Sun Lingyou,Sun Jianguo

Abstract

Abstract Background Previous studies suggested that zinc finger protein 536 (ZNF536) was abundant in the central brain and regulated neuronal differentiation. However, the role of ZNF536 in cancer has remained unclear. Methods ZNF536 mutation, copy number alteration, DNA methylation, and RNA expression were explored using public portals. Data from The Cancer Genome Atlas (TCGA) were utilized to analyze pathways and tumor microenvironment (TME), with a focus on prognosis in both TCGA and immunotherapy pan-cancer cohorts. Methylated ZNF536 from small cell lung cancer (SCLC) cell lines were utilized to train with probes for conducting enrichment analysis. Single-cell RNA profile demonstrated the sublocalization and co-expression of ZNF536, and validated its targets by qPCR. Results Genetic alterations in ZNF536 were found to be high-frequency and a single sample could harbor different variations. ZNF536 at chromosome 19q12 exerted a bypass effect on CCNE1, supported by CRISPR data. For lung cancer, ZNF536 mutation was associated with longer survival in primary lung adenocarcinoma (LUAD), but its prognosis was poor in metastatic LUAD and SCLC. Importantly, ZNF536 mutation and amplification had opposite prognoses in Stand Up To Cancer-Mark Foundation (SU2C-MARK) LUAD cohort. ZNF536 mutation altered the patterns of genomic alterations in tumors, and had distinct impacts on the signaling pathways and TME compared to ZNF536 amplification. Additionally, ZNF536 expression was predominantly in endocrine tumors and brain tissues. High-dimensional analysis supported this finding and further revealed regulators of ZNF536. Considering that the methylation of ZNF536 was involved in the synaptic pathway associated with neuroendocrine neoplasms, demonstrating both diagnostic and prognostic value. Moreover, we experimentally verified ZNF536 upregulated neuroendocrine markers. Conclusions Our results showed that ZNF536 alterations in cancer, including variations in copy number, mutation, and methylation. We proved the involvement of ZNF536 in neuroendocrine regulation, and identified highly altered ZNF536 as a potential biomarker for immunotherapy.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Reference47 articles.

1. Rozenblatt-Rosen O, Regev A, Oberdoerffer P, Nawy T, Hupalowska A, Rood JE, Ashenberg O, Cerami E, Coffey RJ, Demir E, Ding L, Esplin ED, Ford JM, Goecks J, Ghosh S, Gray JW, Guinney J, Hanlon SE, Hughes SK, Hwang ES, Iacobuzio-Donahue CA, Jané-Valbuena J, Johnson BE, Lau KS, Lively T, Mazzilli SA, Pe’er D, Santagata S, Shalek AK, Schapiro D, Snyder MP, Sorger PK, Spira AE, Srivastava S, Tan K, West RB, Williams EH. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell. 2020;181(2):236–49.

2. Kawasaki K, Rekhtman N, Quintanal-Villalonga Á, Rudin CM. Neuroendocrine neoplasms of the lung and gastrointestinal system: convergent biology and a path to better therapies. Nat Rev Clin Oncol. 2023;20(1):16–32.

3. Qin Z, Ren F, Xu X, Ren Y, Li H, Wang Y, Zhai Y, Chang Z. ZNF536, a novel zinc finger protein specifically expressed in the brain, negatively regulates neuron differentiation by repressing retinoic acid-induced gene transcription. Mol Cell Biol. 2009;29(13):3633–43.

4. Labrecque MP, Brown LG, Coleman IM, Lakely B, Brady NJ, Lee JK, Nguyen HM, Li D, Hanratty B, Haffner MC, Rickman DS, True LD, Lin DW, Lam HM, Alumkal JJ, Corey E, Nelson PS, Morrissey C. RNA splicing factors SRRM3 and SRRM4 distinguish molecular phenotypes of castration-resistant neuroendocrine prostate cancer. Can Res. 2021;81(18):4736–50.

5. Adamson AW, Ding YC, Steele L, Leong LA, Morgan R, Wakabayashi MT, Han ES, Dellinger TH, Lin PS, Hakim AA, Wilczynski S, Warden CD, Tao S, Bedell V, Cristea MC, Neuhausen SL. Genomic analyses of germline and somatic variation in high-grade serous ovarian cancer. J Ovarian Res. 2023;16(1):141.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3