Novel method for reduction of virus load in blood plasma by sonication

Author:

Pförringer D.,Braun K. F.,Mühlhofer H.,Schneider J.,Stemberger A.,Seifried E.,Pohlscheidt E.,Seidel M.,Edenharter G.,Duscher D.,Burgkart R.,Obermeier A.

Abstract

Abstract Background Aim of the present study is the evaluation of ultrasound as a physical method for virus inactivation in human plasma products prior to transfusion. Our study is focused on achieving a high level of virus inactivation simultaneously leaving blood products unaltered, measured by the level of degradation of coagulation factors, especially in third world countries where virus contamination of blood products poses a major problem. Virus inactivation plays an important role, especially in the light of newly discovered or unknown viruses, which cannot be safely excluded via prior testing. Methods Taking into account the necessary protection of the relevant coagulation activity for plasma, the basis for a sterile virus inactivation under shielding gas insufflation was developed for future practical use. Influence of frequency and power density in the range of soft and hard cavitation on the inactivation of transfusion-relevant model viruses for Hepatitis-(BVDV = bovine diarrhea virus), for Herpes-(SFV = Semliki Forest virus, PRV = pseudorabies virus) and Parvovirus B19 (PPV = porcine parvovirus) were examined. Coagulation activity was examined via standard time parameters to minimize reduction of functionality of coagulation proteins. A fragmentation of coagulation proteins via ultrasound was ruled out via gel electrophoresis. The resulting virus titer was examined using end point titration. Results Through CO2 shielding gas insufflation—to avoid radical emergence effects—the coagulation activity was less affected and the time window for virus inactivation substantially widened. In case of the non-lipidated model virus (AdV-luc = luciferase expressing adenoviral vector), the complete destruction of the virus capsid through hard cavitation was proven via scanning electron microscopy (SEM). This can be traced back to microjets and shockwaves occurring in hard cavitation. The degree of inactivation seems to depend on size and compactness of the type of viruses. Using our pre-tested and subsequently chosen process parameters with the exception of the small PPV, all model viruses were successfully inactivated and reduced by up to log 3 factor. For a broad clinical usage, protection of the coagulation activities may require further optimization. Conclusions Building upon the information gained, an optimum inactivation can be reached via raising of power density up to 1200 W and simultaneous lowering of frequency down to 27 kHz. In addition, the combination of the two physical methods UV treatment and ultrasound may yield optimum results without the need of substance removal after the procedure.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference28 articles.

1. Bundestag D. Gesetz zur Regelung des Transfusionswesens (Transfusionsgesetz). In: Deutschland B, editor. BGBl I S 1752. Berlin: Springer; 1998.

2. Fry DE. Occupational blood-borne diseases in surgery. Am J Surg. 2005;190:249–54.

3. Satake M. Infectious risks associated with the transfusion of blood components and pathogen inactivation in Japan. Int J Hematol. 2004;80:306–10.

4. Burnouf T, Radosevich M. Nanofiltration of plasma-derived biopharmaceutical products. Haemophilia. 2003;9:24–37.

5. Niemann F: Aktuelle Sicherheitsaspekte bei Plasmaderivaten. Deutsches Ärzteforum; 2003.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3