Author:
Saini Ravinder S.,Alshadidi Abdulkhaliq Ali F.,Gurumurthy Vishwanath,Okshah Abdulmajeed,Vaddamanu Sunil Kumar,Binduhayyim Rayan Ibrahim H.,Chaturvedi Saurabh,Bavabeedu Shashit Shetty,Heboyan Artak
Abstract
Abstract
Background
Yttrium-stabilized zirconia (YSZ) and alumina are the most commonly used dental esthetic crown materials. This study aimed to provide detailed information on the comparison between yttrium-stabilized zirconia (YSZ) and alumina, the two materials most often used for esthetic crowns in dentistry.
Methodology
The ground-state energy of the materials was calculated using the Cambridge Serial Total Energy Package (CASTEP) code, which employs a first-principles method based on density functional theory (DFT). The electronic exchange–correlation energy was evaluated using the generalized gradient approximation (GGA) within the Perdew (Burke) Ernzerhof scheme.
Results
Optimization of the geometries and investigation of the optical properties, dynamic stability, band structures, refractive indices, and mechanical properties of these materials contribute to a holistic understanding of these materials. Geometric optimization of YSZ provides important insights into its dynamic stability based on observations of its crystal structure and polyhedral geometry, which show stable configurations. Alumina exhibits a distinctive charge, kinetic, and potential (CKP) geometry, which contributes to its interesting structural framework and molecular-level stability. The optical properties of alumina were evaluated using pseudo-atomic computations, demonstrating its responsiveness to external stimuli. The refractive indices, reflectance, and dielectric functions indicate that the transmission of light by alumina depends on numerous factors that are essential for the optical performance of alumina as a material for esthetic crowns. The band structures of both the materials were explored, and the band gap of alumina was determined to be 5.853 eV. In addition, the band structure describes electronic transitions that influence the conductivity and optical properties of a material. The stability of alumina can be deduced from its bandgap, an essential property that determines its use as a dental material. Refractive indices are vital optical properties of esthetic crown materials. Therefore, the ability to understand their refractive-index graphs explains their transparency and color distortion through how the material responds to light..The regulated absorption characteristics exhibited by YSZ render it a highly attractive option for the development of esthetic crowns, as it guarantees minimal color distortion.
Conclusion
The acceptability of materials for esthetic crowns is strongly determined by mechanical properties such as elastic stiffness constants, Young's modulus, and shear modulus. YSZ is a highly durable material for dental applications, owing to its superior mechanical strength.
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. Coffman C, Visser C, Soukup J. mjwsvdp practice crowns and prosthodontics. Hoboken: Wiley. 2019.
2. Malament KA, Goldstein RE, Stappert CF, Taheri M, Sing. Crown Restorations. In: Ronald E Goldstein’s Esthetics in Dentistry. Hoboken, NJ, USA: John Wiley & Sons, Inc. 2018;498–540.
3. Ganvir KD, Khangar VJ. Technology: study on fatigue strength of a dental crown: a review. Int J Eng ResTechnol. 2014.
4. Oueis R. Clinical decision-making: a survey on the influence of specialty and experience in treatment planning of multidisciplinary cases. Birmingham: The University of Alabama at Birmingham; 2022.
5. Saini RS, Gurumurthy V, Quadri SA, Bavabeedu SS, Abdelaziz KM, Okshah A, Alshadidi AAF, Yessayan L, Mosaddad SA, Heboyan A. The flexural strength of 3D-printed provisional restorations fabricated with different resins: a systematic review and meta-analysis. BMC Oral Health. 2024;24(1):66.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献