The flexural strength of 3D-printed provisional restorations fabricated with different resins: a systematic review and meta-analysis

Author:

Saini Ravinder S.,Gurumurthy Vishwanath,Quadri Syed Altafuddin,Bavabeedu Shashit Shetty,Abdelaziz Khalid M.,Okshah Abdulmajeed,Alshadidi Abdulkhaliq Ali F.,Yessayan Lazar,Mosaddad Seyed Ali,Heboyan Artak

Abstract

Abstract Background Three-dimensional (3D) printing technology has revolutionized dentistry, particularly in fabricating provisional restorations. This systematic review and meta-analysis aimed to thoroughly evaluate the flexural strength of provisional restorations produced using 3D printing while considering the impact of different resin materials. Methods A systematic search was conducted across major databases (ScienceDirect, PubMed, Web of Sciences, Google Scholar, and Scopus) to identify relevant studies published to date. The inclusion criteria included studies evaluating the flexural strength of 3D-printed provisional restorations using different resins. Data extraction and quality assessment were performed using the CONSORT scale, and a meta-analysis was conducted using RevMan 5.4 to pool results. Results Of the 1914 initially identified research articles, only 13, published between January 2016 and November 2023, were included after screening. Notably, Digital Light Processing (DLP) has emerged as the predominant 3D printing technique, while stereolithography (SLA), Fused Deposition Modeling (FDM), and mono-liquid crystal displays (LCD) have also been recognized. Various printed resins have been utilized in different techniques, including acrylic, composite resins, and methacrylate oligomer-based materials. Regarding flexural strength, polymerization played a pivotal role for resins used in 3D or conventional/milled resins, revealing significant variations in the study. For instance, SLA-3D and DLP Acrylate photopolymers displayed distinct strengths, along with DLP bisacrylic, milled PMMA, and conventional PMMA. The subsequent meta-analysis indicated a significant difference in flexure strength, with a pooled Mean Difference (MD) of − 1.25 (95% CI − 16.98 - 14.47; P < 0.00001) and a high I2 value of 99%, highlighting substantial heterogeneity among the studies. Conclusions This study provides a comprehensive overview of the flexural strength of 3D-printed provisional restorations fabricated using different resins. However, further research is recommended to explore additional factors influencing flexural strength and refine the recommendations for enhancing the performance of 3D-printed provisional restorations in clinical applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3