An artificial intelligence-enabled ECG algorithm for identifying ventricular premature contraction during sinus rhythm

Author:

Chang Sheng-Nan,Tseng Yu-Heng,Chen Jien-Jiun,Chiu Fu-Chun,Tsai Chin-Feng,Hwang Juey-Jen,Wang Yi-Chih,Tsai Chia-Ti

Abstract

Abstract Background Ventricular premature complex (VPC) is a common arrhythmia in clinical practice. VPC could trigger ventricular tachycardia/fibrillation or VPC-induced cardiomyopathy in susceptible patients. Existing screening methods require prolonged monitoring and are limited by cost and low yield when the frequency of VPC is low. Twelve-lead electrocardiogram (ECG) is low cost and widely used. We aimed to identify patients with VPC during normal sinus rhythm (NSR) using artificial intelligence (AI) and machine learning-based ECG reading. Methods We developed AI-enabled ECG algorithm using a convolutional neural network (CNN) to detect the ECG signature of VPC presented during NSR using standard 12-lead ECGs. A total of 2515 ECG records from 398 patients with VPC were collected. Among them, only ECG records of NSR without VPC (1617 ECG records) were parsed. Results A total of 753 normal ECG records from 387 patients under NSR were used for comparison. Both image and time-series datasets were parsed for the training process by the CNN models. The computer architectures were optimized to select the best model for the training process. Both the single-input image model (InceptionV3, accuracy: 0.895, 95% confidence interval [CI] 0.683–0.937) and multi-input time-series model (ResNet50V2, accuracy: 0.880, 95% CI 0.646–0.943) yielded satisfactory results for VPC prediction, both of which were better than the single-input time-series model (ResNet50V2, accuracy: 0.840, 95% CI 0.629–0.952). Conclusions AI-enabled ECG acquired during NSR permits rapid identification at point of care of individuals with VPC and has the potential to predict VPC episodes automatically rather than traditional long-time monitoring.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3