Characterization of plasmid-mediated qnrA and qnrB genes among Enterobacteriaceae strains: quinolone resistance and ESBL production in Ismailia, Egypt

Author:

Taha Samaa A.,Omar Hanan HassanORCID,Hassan wafaa Hassan

Abstract

Abstract Background Plasmid-mediated quinolone resistance genes (PMQR) are mainly associated with clinical isolates of Enterobacteriaceae and complicate treatment of infections caused by these isolates worldwide. Extended-spectrum-beta-lactamase (ESBL)-producing bacteria are resistant to common antibiotics and also through many mechanisms, ESBL could be disabling other types of antibiotics. This study aimed to assess the prevalence of quinolone resistance and ESBL among Enterobacteriaceae strains and investigated the presence of qnrA and qnrB genes in these strains which were isolated from urinary tract infections in Ismailia, Egypt. Ninety-four Enterobacteriaceae isolates were collected from cases of UTIs admitted to the intensive care unit, Suez-Canal University Hospitals, between October 2017 and January 2018. Antibacterial susceptibility was determined by the disk diffusion method. A polymerase chain reaction assay was used to detect qnrA and qnrB resistance genes in quinolone- and fluoroquinolone-resistant and ESBL strains. Also, ciprofloxacin MIC was determined by the agar dilution method. Results Resistance rates were 59.6%, 54.3%, 53.2%, 53.2%, and 53.2% to NA, LEV, NOR, CIP, and FX, respectively. Of 56 NA-resistant isolates, 7 (12.5%) and 6 (10.7%) were positive for qnrA and qnrB, respectively, with only one isolate co-harboring both genes. ESBL-producing bacteria was 66.2% of isolates. The MICs for ciprofloxacin ranged from 32–256 μg/ml in ciprofloxacin-resistant isolates. Conclusion Our study shows high resistance rates of Enterobacteriaceae to quinolones and ESBL in our hospital which necessitate appropriate use of these antibiotics to reserve their application for therapy. The prevalence of quinolone-resistant and ESBL-producing Enterobacteriaceae was approximately 60% and 70% respectively.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3