Rare and potentially pathogenic variants in hydroxycarboxylic acid receptor genes identified in breast cancer cases

Author:

McGuire Sams Cierla,Shepp Kasey,Pugh Jada,Bishop Madison R.,Merner Nancy D.ORCID

Abstract

Abstract Background Three genes clustered together on chromosome 12 comprise a group of hydroxycarboxylic acid receptors (HCARs): HCAR1, HCAR2, and HCAR3. These paralogous genes encode different G-protein coupled receptors responsible for detecting glycolytic metabolites and controlling fatty acid oxidation. Though better known for regulating lipid metabolism in adipocytes, more recently, HCARs have been functionally associated with breast cancer proliferation/survival; HCAR2 has been described as a tumor suppressor and HCAR1 and HCAR3 as oncogenes. Thus, we sought to identify germline variants in HCAR1, HCAR2, and HCAR3 that could potentially be associated with breast cancer risk. Methods Two different cohorts of breast cancer cases were investigated, the Alabama Hereditary Cancer Cohort and The Cancer Genome Atlas, which were analyzed through nested PCRs/Sanger sequencing and whole-exome sequencing, respectively. All datasets were screened for rare, non-synonymous coding variants. Results Variants were identified in both breast cancer cohorts, some of which appeared to be associated with breast cancer BC risk, including HCAR1 c.58C > G (p.P20A), HCAR2 c.424C > T (p.R142W), HCAR2 c.517_518delinsAC (p.G173T), HCAR2 c.1036A > G (p.M346V), HCAR2 c.1086_1090del (p.P363Nfs*26), HCAR3 c.560G > A (p.R187Q), and HCAR3 c.1117delC (p.Q373Kfs*82). Additionally, HCAR2 c.515C > T (p.S172L), a previously identified loss-of-function variant, was identified. Conclusions Due to the important role of HCARs in breast cancer, it is vital to understand how these genetic variants play a role in breast cancer risk and proliferation and their consequences on treatment strategies. Additional studies will be needed to validate these findings. Nevertheless, the identification of these potentially pathogenic variants supports the need to investigate their functional consequences.

Funder

Auburn University

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3