Microarray-Based Prediction of Polycythemia after Exposure to High Altitudes

Author:

Wang Haijing,Liu Daoxin,Song PengfeiORCID,Jiang Feng,Zhang Tongzuo

Abstract

In high-altitude environments, the prevalence of high-altitude polycythemia (HAPC) ranges between 5 and 18 percent. However, there is currently no effective treatment for this condition. Therefore, disease prevention has emerged as a critical strategy against this disease. Here, we looked into the microarray profiles of GSE135109 and GSE29977, linked to either short- or long-term exposure to the Qinghai Tibet Plateau (QTP). The results revealed inhibition in the adaptive immune response during 30 days of exposure to QTP. Following a gene set enrichment analysis (GSEA) discovered that genes associated with HAPC were enriched in Cluster1, which showed a dramatic upregulation on the third day after arriving at the QTP. We then used GeneLogit to construct a logistic prediction model, which allowed us to identify 50 genes that classify HAPC patients. In these genes, LRRC18 and HCAR3 were also significantly altered following early QTP exposure, suggesting that they may serve as hub genes for HAPC development. The in-depth study of a combination of the datasets of transcriptomic changes during exposure to a high altitude and whether diseases occur after long-term exposure in Hans can give us some inspiration about genes associated with HAPC development during adaption to high altitudes.

Funder

Ministry of Science and Technology of the People's Republic of China

Chinese Academy of Sciences

Science and Technology Department of Qinghai Province

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3