Author:
Liu Danhua,Zhao Yongli,Xue Xia,Hou Xinyue,Xu Hongen,Zhao Xinghua,Tian Yongan,Tang Wenxue,Guo Jiancheng,Xu Changbao
Abstract
Abstract
Background
Cystinuria is an autosomal recessive disorder characterized by a cystine transport deficiency in the renal tubules due to mutations in two genes: SLC3A1 and SLC7A9. Cystinuria can be classified into three forms based on the genotype: type A, due to mutations in the SLC3A1 gene; type B, due to mutations in the SLC7A9 gene; and type AB, due to mutations in both genes.
Methods
We report a 12-year-old boy from central China with cystine stones. He was from a non-consanguineous family that had no known history of genetic disease. A physical examination showed normal development and neurological behaviors. Whole-exome and Sanger sequencing were used to identify and verify the suspected pathogenic variants.
Results
The compound heterozygous variants c.898_905del (p.Arg301AlafsTer6) is located in exon5 and c.1898_1899insAT (p.Asp634LeufsTer46) is located in exon10 of SLC3A1 (NM_000341.4) were deemed responsible for type A cystinuria family. The variant c.898_905del was reported in a Japanese patient in 2000, and the variant c.1898_1899insAT is novel.
Conclusion
A novel pathogenic heterozygous variant pair of the SLC3A1 gene was identified in a Chinese boy with type A cystinuria, enriching the mutational spectrum of the SLC3A1 gene. We attempted to find a pattern for the association between the genotype of SLC3A1 variants and the manifestations of cystinuria in patients with different onset ages. Our findings have important implications for genetic counseling and the early clinical diagnosis of cystinuria.
Funder
Key R&D (research and development) and Promotion Projects in Henan Province
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics