Identification of intestinal flora-related key genes and therapeutic drugs in colorectal cancer

Author:

Zhang Jiayu,Zhang Huaiyu,Li Faping,Song Zheyu,Li Yezhou,Zhao Tiancheng

Abstract

Abstract Background Colorectal cancer (CRC) is a multifactorial tumor and a leading cause of cancer-specific deaths worldwide. Recent research has shown that the alteration of intestinal flora contributes to the development of CRC. However, the molecular mechanism by which intestinal flora influences the pathogenesis of CRC remains unclear. This study aims to explore the key genes underlying the effect of intestinal flora on CRC and therapeutic drugs for CRC. Methods Intestinal flora-related genes were determined using text mining. Based on The Cancer Genome Atlas database, differentially expressed genes (DEGs) between CRC and normal samples were identified with the limma package of the R software. Then, the intersection of the two gene sets was selected for enrichment analyses using the tool Database for Annotation, Visualization and Integrated Discovery. Protein interaction network analysis was performed for identifying the key genes using STRING and Cytoscape. The correlation of the key genes with overall survival of CRC patients was analyzed. Finally, the key genes were queried against the Drug-Gene Interaction database to find drug candidates for treating CRC. Results 518 genes associated with intestinal flora were determined by text mining. Based on The Cancer Genome Atlas database, we identified 48 DEGs associated with intestinal flora, including 25 up-regulated and 23 down-regulated DEGs in CRC. The enrichment analyses indicated that the selected genes were mainly involved in cell–cell signaling, immune response, cytokine-cytokine receptor interaction, and JAK-STAT signaling pathway. The protein–protein interaction network was constructed with 13 nodes and 35 edges. Moreover, 8 genes in the significant cluster were considered as the key genes and chemokine (C-X-C motif) ligand 8 (CXCL8) correlated positively with the overall survival of CRC patients. Finally, a total of 24 drugs were predicted as possible drugs for CRC treatment using the Drug-Gene Interaction database. Conclusions These findings of this study may provide new insights into CRC pathogenesis and treatments. The prediction of drug-gene interaction is of great practical significance for exploring new drugs or novel targets for existing drugs.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3