Findings from precision oncology in the clinic: rare, novel variants are a significant contributor to scaling molecular diagnostics

Author:

Doig Kenneth D.ORCID,Love Christopher G.,Conway Thomas,Seleznev Andrei,Ma David,Fellowes Andrew,Blombery Piers,Fox Stephen B.

Abstract

Abstract Background Next generation sequencing for oncology patient management is now routine in clinical pathology laboratories. Although wet lab, sequencing and pipeline tasks are largely automated, the analysis of variants for clinical reporting remains largely a manual task. The increasing volume of sequencing data and the limited availability of genetic experts to analyse and report on variants in the data is a key scalability limit for molecular diagnostics. Method To determine the impact and size of the issue, we examined the longitudinally compiled genetic variants from 48,036 cancer patients over a six year period in a large cancer hospital from ten targeted cancer panel tests in germline, solid tumour and haematology contexts using hybridization capture and amplicon assays. This testing generated 24,168,398 sequenced variants of which 23,255 (8214 unique) were clinically reported. Results Of the reported variants, 17,240 (74.1%) were identified in more than one assay which allowed curated variant data to be reused in later reports. The remainder, 6015 (25.9%) were not subsequently seen in later assays and did not provide any reuse benefit. The number of new variants requiring curation has significantly increased over time from 1.72 to 3.73 variants per sample (292 curated variants per month). Analysis of the 23,255 variants reported, showed 28.6% (n = 2356) were not present in common public variant resources and therefore required de novo curation. These in-house only variants were enriched for indels, tumour suppressor genes and from solid tumour assays. Conclusion This analysis highlights the significant percentage of variants not present within common public variant resources and the level of non-recurrent variants that consequently require greater curation effort. Many of these variants are unique to a single patient and unlikely to appear in other patients reflecting the personalised nature of cancer genomics. This study depicts the real-world situation for pathology laboratories faced with curating increasing numbers of low-recurrence variants while needing to expedite the process of manual variant curation. In the absence of suitably accurate automated methods, new approaches are needed to scale oncology diagnostics for future genetic testing volumes.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3