Assessment of mitigation alternatives for differential shortening in high-rise reinforced concrete buildings

Author:

Elansary AhmedORCID,Metwally Mohamed I.,El-Attar Adel

Abstract

AbstractSelecting appropriate structural system for reinforced concrete (RC) buildings is essential in the design process to satisfy serviceability and strength requirements. Using ordinary analysis (OA) may result in inaccurate estimation of differential shortenings (DS) between vertical supporting elements which might lead to structural and architectural problems. Efficiency of staged analysis including time-dependent effects (SAT) has been recently recognized for the analysis of these buildings due to considering the sequential nature of construction. In this research, eight RC buildings with heights ranging between 35 and 175 m and various structural systems, namely rigid frames (RF), shear walls (SW), wall frames (WF), and tube in tube (TT), are analyzed. An assessment is conducted for the adequacy of three mitigation alternatives to decrease changes between DS estimated using OA and SAT. In Alternative 1, cross sections of all vertical elements (columns and shear walls) are increased by 50%. Alternative 2 is performed by iteratively proportioning the dimensions of internal columns without changing the cross sections of edge and corner vertical elements. One outrigger system is introduced along the height of buildings with WF and TT systems in Alternative 3. Analysis of the eight buildings is implemented by developing a numerical model considering the construction stages and time-dependent effects. The alternatives assessment is conducted by comparing differential displacements (DD), bending moments, and shearing forces before and after mitigation obtained from OA and SAT. The numerical results showed that Alternative 1 is not efficient in mitigating the differences between the OA and SAT for all the studied buildings. However, an optimum solution can be achieved using the Alternative 2 for all investigated systems. Also, Alternative 3 was found adequate in partially mitigating the differences between the two analyses for the buildings with WF and TT systems.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3