Study on mechanism and influential factors of progressive collapse resistance of base-isolated structure

Author:

Bao ChaoORCID,Zhang Yuhang,Lv Dahai,Wang Huxiang,Ma Xiaotong,Cao Jixing,Lim Kar Sing

Abstract

AbstractThe progressive collapse of the structure caused by the partial failure of the structure will cause severe consequences and massive losses, and structural progressive collapse resistance has always been a hot topic of current research. In order to study the progressive collapse mechanism of base-isolated structures, the test study and numerical simulation of the base-isolated structures were carried out based on the vertical Pushover method and analysis of the variation rule of the capacity of the remaining structure and influence mechanism. The isolation bearing failure position, the size of the beam of the seismic isolation layer, the type of the isolation bearing, and the horizontal stiffness of the seismic isolation layer on the capacity of the remaining structure were compared and analyzed. The results show that the non-uniformity of the beams and the concentrated loading at the nodes were easy to form a linear catenary mechanism, resulting in more severe beam end damage than mid-span damage. In the case of side isolation bearing failure, due to the lack of sufficient lateral restraint, the capacity was significantly lower than other conditions, which were more likely to cause partly collapse. Therefore, setting more transfer paths to improve the structure’s resistance to progressive collapses was necessary. Increasing the size of the beam of the seismic isolation layer could improve the capacity of the remaining structure of the alternate load path in the base-isolated structure. The changes in the horizontal stiffness of the seismic isolation layer and the type of the isolation bearing have little effect on the progressive collapse resistance capacity of the remaining structure.

Funder

Natural Science Foundation of Ningxia

Ningxia Key Research and Development Program

West Light Foundation of the Chinese Academy of Sciences

Ningxia Outstanding Talent Support Program Project

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3