Design optimization and production of a small-scale semi-trailer chassis for testing

Author:

Ibrahim Arafat MORCID,Ali Ahmed M,Kamel Hisham

Abstract

AbstractThe automotive industry is placing a high priority on the design and optimization of articulated vehicles to minimize the risk of potential accidents or failures. Before mass production, field testing is a crucial step in the development process, requiring extensive dynamic tests to provide a secure design. However, these tests can be both expensive and time-consuming. This study presents the design process of a small-scale low-bed semi-trailer chassis, manufactured to simulate the structural response of an actual semi-trailer. The aim was to identify weak points through analysis under bending conditions and then optimize the thickness and width of the various cross-sections to increase strength while minimizing costs. After manufacturing and welding based on the optimized design, the equivalent chassis was subjected to two load cases for experimental testing. The test results confirmed the accuracy of the finite element analysis, with a deviation of 7.75 to 10.24% in stress levels compared to the numerical results. Overall, this study demonstrates an effective approach to optimize the design of low-bed semi-trailers for improved safety and cost-effectiveness.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3