Predict the compressive strength of ultra high-performance concrete by a hybrid method of machine learning

Author:

Gong Nana,Zhang Naimin

Abstract

AbstractUltra-high performance concrete (UHPC) benefits the construction industry due to its improved flexibility, high workability, durability, and performance compared to normal concrete. Some investigators have conducted observed papers on the UHPC’s mechanical properties for establishing a reliable analytical approach for calculating the compressive strength, tensile strength, slump, etc. However, most of these studies were performed with limited samples because of the UHPC’s high cost. This study aims to predict the compressive strength (CS) of UHPC through hybrid machine-learning approaches. The model is included Adaptive-Network Fuzzy Inference System (ANFIS). Moreover, three meta-heuristic algorithms were employed to improve the developed model's accuracy, including the Generalized Normal Distribution Optimization, the COOT optimization algorithm, and the Honey Badger Algorithm. Several metrics were used to compare and assess the performance of the hybrid models in the framework of ANGN, ANCO, and ANHB. A comparison of the predicted and measured results generally shows that the proposed developed models can reasonably estimate the mechanical properties of UHPC. The results indicated that the ANHB model could estimate the CS of UHPC with the most suitable accuracy.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference37 articles.

1. Wille K, Naaman AE, El-Tawil S, Parra-Montesinos GJ (2012) Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing. Mater Struct 45:309–324

2. Graybeal B (2011) Ultra-high performance concrete

3. Russell HG, Graybeal BA, Russell HG (2013) Ultra-high performance concrete: a state-of-the-art report for the bridge community. Federal Highway Administration. Office of Infrastructure Research and Development, United States

4. Tang MC (2004) High performance concrete—past, present and future. Proc. Int. Symp. UHPC, Kassel, Ger. pp 3–9

5. Alsalman A, Dang CN, Prinz GS, Hale WM (2017) Evaluation of modulus of elasticity of ultra-high performance concrete. Constr Build Mater 153:918–928. https://doi.org/10.1016/j.conbuildmat.2017.07.158

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3