Hybrid data-driven approaches to predicting the compressive strength of ultra-high-performance concrete using SHAP and PDP analyses
Author:
Funder
Najran University
Kingdom of Saudi Arabia Ministry of Education
Publisher
Elsevier BV
Reference101 articles.
1. Ensemble XGBoost schemes for improved compressive strength prediction of UHPC;Huu Nguyen;Structures,2023
2. Predict the compressive strength of ultra high-performance concrete by a hybrid method of machine learning;Gong;J. Eng. Appl. Sci.,2023
3. Study of nonlinear relationships between dosage mixture design and the compressive strength of UHPC;Abellán-García;Case Stud. Constr. Mater.,2022
4. Performance assessment and design of ultra-high performance concrete (UHPC) structures incorporating life-cycle cost and environmental impacts;Dong;Constr. Build. Mater.,2018
5. Optimizing characteristics of high-performance concrete incorporating hybrid polypropylene fibers;Tahwia;Innov. Infrastruct. Solut.,2023
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Tree-based machine learning models for predicting the bond strength in reinforced recycled aggregate concrete;Asian Journal of Civil Engineering;2024-09-02
2. Compressive Strength Prediction of Basalt Fiber Reinforced Concrete Based on Interpretive Machine Learning Using SHAP Analysis;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2024-08-28
3. Machine learning models for predicting the compressive strength of agro-waste stabilized bricks for sustainable buildings;Discover Civil Engineering;2024-08-13
4. An ensemble learning-based prediction model for the compressive strength degradation of concrete containing superabsorbent polymers (SAP);Scientific Reports;2024-08-09
5. Spatio-temporal prediction of total energy consumption in multiple regions using explainable deep neural network;Energy;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3