Author:
Wang Xiao-Dong,Zou Liang-Liang,Liu Ji-Guang,Luo Yi,Liu Gang,Yu Bei-Ke
Abstract
Abstract
With the excellent thermal conductivity and the compatibility to micro electromechanical systems technology, silicon is widely used in micro heat pipes (MHPs). Copper shows higher heat transfer capability and capillary traction than silicon. Copper microgrooves were fabricated on the silicon wafer using electroforming technique in this paper. Water contact angle measurements and thermal behavior tests demonstrated that copper-grooved MHPs showed better performance than silicon ones. Under the input power of 5.99 W, the equivalent thermal conductivities of copper-grooved and silicon-grooved MHPs were 228.98 W/K · m and 196.26 W/K · m. This work showed the feasibility of copper grooved silicon based MHPs in heat transfer for high-power light emitting diode (HP LED).
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Cheng T, Luo XB, Huang S, Liu S: Thermal analysis and optimization of multiple LED packaging based on a general solution. Int J Therm Sci 2010, 49: 196–201.
2. Juntunen E, Tapaninen O, Sitomaniemi A, Heikkinen VE: Effect of phosphor encapsulant on the thermal resistance of a high-power COB LED module. Trans Compon Packag Manuf Tech 2013, 3: 148–1154.
3. Luo XB, Fu X, Chen F, Zheng H: Phosphor self-heating in phosphor converted light emitting diode packaging. Int J Heat Mass Transf 2013, 58: 276–281.
4. Hu R, Luo XB, Zheng H: Hotspot location shift in the high power phosphor converted white light-emitting diode package. Jpn J Appl Phys 2012, 51: 1–4. 09MK05 09MK05
5. Liou BH, Chen CH, Horng RH, Chiang YC, Wuu DS: Improvement of thermal management of high-power GaN-based light-emitting diodes. Microelectron Reliab 2012, 52: 861–865.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献