Global connectivity in genome-scale metabolic networks revealed by comprehensive FBA-based pathway analysis

Author:

Gao Yajie,Yuan Qianqian,Mao Zhitao,Liu Hao,Ma Hongwu

Abstract

Abstract Background Graph-based analysis (GBA) of genome-scale metabolic networks has revealed system-level structures such as the bow-tie connectivity that describes the overall mass flow in a network. However, many pathways obtained by GBA are biologically impossible, making it difficult to study how the global structures affect the biological functions of a network. New method that can calculate the biologically relevant pathways is desirable for structural analysis of metabolic networks. Results Here, we present a new method to determine the bow-tie connectivity structure by calculating possible pathways between any pairs of metabolites in the metabolic network using a flux balance analysis (FBA) approach to ensure that the obtained pathways are biologically relevant. We tested this method with 15 selected high-quality genome-scale metabolic models from BiGG database. The results confirmed the key roles of central metabolites in network connectivity, locating in the core part of the bow-tie structure, the giant strongly connected component (GSC). However, the sizes of GSCs revealed by GBA are significantly larger than those by FBA approach. A great number of metabolites in the GSC from GBA actually cannot be produced from or converted to other metabolites through a mass balanced pathway and thus should not be in GSC but in other subsets of the bow-tie structure. In contrast, the bow-tie structural classification of metabolites obtained by FBA is more biologically relevant and suitable for the study of the structure-function relationships of genome scale metabolic networks. Conclusions The FBA based pathway calculation improve the biologically relevant classification of metabolites in the bow-tie connectivity structure of the metabolic network, taking us one step further toward understanding how such system-level structures impact the biological functions of an organism.

Funder

Tianjin Synthetic Biotechnology Innovation Capacity Improvement Projects

International Partnership Program of Chinese Academy of Sciences

Science and Technology Partnership Program, Ministry of Science of China

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A meaningful path finding method without specific starting metabolite;International Symposium on Robotics, Artificial Intelligence, and Information Engineering (RAIIE 2022);2022-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3