Production of extracellular amylase contributes to the colonization of Bacillus cereus 0–9 in wheat roots

Author:

Huang Qiubin,Liu Huiping,Zhang Juanmei,Wang Shaowei,Liu Fengying,Li Chengdie,Wang GangORCID

Abstract

Abstract Background Bacteria usually secrete a variety of extracellular enzymes to degrade extracellular macromolecules to meet their nutritional needs and enhance their environmental adaptability. Bacillus cereus 0–9, a biocontrol bacterial strain isolated from wheat roots, has three genes annotated as encoding amylases in the genome, but their functions are unknown, and whether they are involved in the colonization process of the bacterium remains to be further studied. Methods Mutant gene strains and fluorescently tagged strains were constructed by homologous recombination, and amylase protein was expressed in the prokaryotic Escherichia coli BL21(DE3) expression system. The iodine staining method was used to measure the activity of amylase proteins. We further observed the colonization abilities of the test strains in wheat roots through frozen section technology. Results The results showed that there were three amylase-encoding genes, amyC, amyP and amyS, in the B. cereus 0–9 genome. Among the three amylase encoding genes, only amyS produced extracellular amylase whose secretion was related to signal peptide at position 1–27. The AmyS protein encoded by the amyS gene is an α-amylase. The growth of Rhizoctonia cerealis was inhibited 84.7% by B. cereus 0–9, but the biocontrol ability of the ΔamyS strain decreased to 43.8% and that of ΔamyS/amyS was restored when the amyS gene was complemented. Furthermore, the biocontrol ability of the ΔamySec strain was decreased to 46.8%, almost the same as that of the ΔamyS mutant. Due to the deletion of the amyS gene, the colonization capacities of ΔamyS (RFP) and ΔamySec (RFP) in wheat roots decreased, while that of ΔamyS/amyS (RFP) was restored after the amyS gene was complemented, indicating that the amyS gene influences the colonization of B. cereus 0–9 in wheat roots. In addition, the colonization and biocontrol abilities of the mutant were restored after the addition of sugars, such as glucose and maltose. Conclusions B. cereus 0–9 encodes three genes annotated as amylases, amyC, amyP and amyS. Only the deletion of the amyS gene with a signal peptide did not produce extracellular amylase. The AmyS protein encoded by the amyS gene is an α-amylase. Our results indicated that the amyS gene is closely related to the colonization abilities of B. cereus 0–9 in wheat roots and the biocontrol abilities of B. cereus 0–9 to fight against R. cerealis. The extracellular amylase produced by B. cereus 0–9 can hydrolyze starch and use glucose, maltose and other nutrients to meet the needs of bacterial growth. Therefore, it is very possible that the secretion and hydrolytic activities of extracellular amylase can promote the colonization of B. cereus 0–9 in wheat roots and play important roles in the prevention and control of plant diseases. Our results contribute to exploring the mechanisms of microbial colonization in plant roots.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference64 articles.

1. Zhang HY, Chen RZ, Feng GH, Liu DT, Wang J, Wang XJ, et al. Research advances and prospect on wheat sharp eyespot in China. J Triticeae Crops. 2007;27:1150–3.

2. Li ML, Xu JQ, Yang L, Zheng W, Xia YF, Hou Y. Research progress and prospect on chemical control of wheat sharp eyespot in China. Chinese J Pesticide Sci. 2020;22:397–404.

3. Liu CH, Zhang X, Lu WZ. Research advances in wheat sharp eyespot and further control strategies. Jiangsu J Agricultural Sci. 2000;16:185–90.

4. Han YP, Chen XL, He ZT, Wang JR, Yang HF. Progress, problem and prospect of wheat sharp eyespot research. J Triticeae Crops. 2001;21:81–4.

5. Whipps JM. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot. 2006;52:487–511.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3