Abstract
Abstract
Background
Groundnut pre- and post-harvest contamination is commonly caused by fungi from the Genus Aspergillus. Aspergillus flavus is the most important of these fungi. It belongs to section Flavi; a group consisting of aflatoxigenic (A. flavus, A. parasiticus and A. nomius) and non-aflatoxigenic (A. oryzae, A. sojae and A. tamarii) fungi. Aflatoxins are food-borne toxic secondary metabolites of Aspergillus species associated with severe hepatic carcinoma and children stuntedness. Despite the well-known public health significance of aflatoxicosis, there is a paucity of information about the prevalence, genetic diversity and population structure of A. flavus in different groundnut growing agro-ecological zones of Uganda. This cross-sectional study was therefore conducted to fill this knowledge gap.
Results
The overall pre- and post-harvest groundnut contamination rates with A. flavus were 30.0 and 39.2% respectively. Pre- and post-harvest groundnut contamination rates with A. flavus across AEZs were; 2.5 and 50.0%; (West Nile), 55.0 and 35.0% (Lake Kyoga Basin) and 32.5 and 32.5% (Lake Victoria Basin) respectively. There was no significant difference (χ2 = 2, p = 0.157) in overall pre- and post-harvest groundnut contamination rates with A. flavus and similarly no significant difference (χ2 = 6, p = 0.199) was observed in the pre- and post-harvest contamination of groundnut with A. flavus across the three AEZs. The LKB had the highest incidence of aflatoxin-producing Aspergillus isolates while WN had no single Aspergillus isolate with aflatoxin-producing potential. Aspergillus isolates from the pre-harvest groundnut samples had insignificantly higher incidence of aflatoxin production (χ2 = 2.667, p = 0.264) than those from the post-harvest groundnut samples. Overall, A. flavus isolates exhibited moderate level (92%, p = 0.02) of genetic diversity across the three AEZs and low level (8%, p = 0.05) of genetic diversity within the individual AEZs. There was a weak positive correlation (r = 0.1241, p = 0.045) between genetic distance and geographic distance among A. flavus populations in the LKB, suggesting that genetic differentiation in the LKB population might be associated to geographic distance. A very weak positive correlation existed between genetic variation and geographic location in the entire study area (r = 0.01, p = 0.471), LVB farming system (r = 0.0141, p = 0.412) and WN farming system (r = 0.02, p = 0.478). Hierarchical clustering using the unweighted pair group method with arithmetic means (UPGMA) revealed two main clusters of genetically similar A. flavus isolates.
Conclusions
These findings provide evidence that genetic differentiation in A. flavus populations is independent of geographic distance. This information can be valuable in the development of a suitable biocontrol management strategy of aflatoxin-producing A. flavus.
Funder
Bill and Melinda Gates Foundation
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference47 articles.
1. Chen X, Li H, Pandey MK, Yang Q, Wang X, Garg V, et al. Draft genome of the peanut A-genome progenitor ( Arachis duranensis ) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Natl Acad Sci. 2016;(2):201600899 Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1600899113.
2. Okello DK, Biruma M, Deom CM. Overview of groundnuts research in Uganda : Past , present and future. 2010;9(39):6448–59.
3. Bhat RV, Vasanthi S. Food Safety in Food Security and Food Trade. Mycotoxin Food Saf Risk Dev Countries IFPRI Br. 2003;3:1–2.
4. Valiante V. The Cell Wall Integrity Signaling Pathway and Its Involvement in Secondary Metabolite Production. J Fungi. 2017;3(4):68 Available from: http://www.mdpi.com/2309-608X/3/4/68.
5. Mohsenzadeh MS, Hedayati N, Riahi-Zanjani B, Karimi G. Immunosuppression following dietary aflatoxin B1 exposure: a review of the existing evidence. Toxin Rev. 2016;35(3–4):121–7.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献