Significant association between genes encoding virulence factors with antibiotic resistance and phylogenetic groups in community acquired uropathogenic Escherichia coli isolates

Author:

Yazdanpour Zahra,Tadjrobehkar OmidORCID,Shahkhah Motahareh

Abstract

Abstract Background Antibiotic resistance is an increasing phenomenon in many bacterial pathogens including uropathogenic Escherichia coli. Hypothetical anti-virulent agents could be a solution, but first clear virulence associated gene-pool of antibiotic resistant isolates have to be determined. The aim of this study is to investigate the significant associations between genes encoding VFs with antibiotic resistance and phylogenetic groups in UPEC isolates. Results The majority of 248 UPEC isolates belonged to phylogenetic group B2 (67.3%). The maximum and minimum resistance was attributed to amoxicillin (90.3%) and both fosfomycin and imipenem (1.6%) respectively. 11.3% of isolates were resistant to all antibiotic agents except that of imipenem, nitrofurantoin and fosfomycin. These highly resistant isolates were placed only in group B2 and D. The most prevalent virulence gene was ompA (93.5%). The hlyA was the only virulence gene that was significantly more prevalent in the highly resistant isolates. The ompA, malX and hlyA genes were obviously more abundant in the antibiotic resistant isolates in comparison to susceptible isolates. The papC gene was associated with amoxicillin resistance (p-value = 0.006, odds ratio: 26.00). Conclusions Increased resistance to first line drugs prescribed for UTIs were detected in CA-UPEC isolates in our study.. Minimal resistance was observed against nitrofurantoin, fosfomycin and imipenem. Therefore, they are introduced for application in empirical therapy of UTIs. Fosfomycin may be the most effective antibiotic agent against highly resistant UPEC isolates. The presence of the ompA, malX and hlyA genes were significantly associated with resistance to different antibiotic agents. We assume that the ability of UPEC isolates to upgrade their antibiotic resistance capacity may occurs in compliance with the preliminary existence of specific virulence associated genes. But, more investigation with higher number of bacterial isolates, further virulence associated genes and comparison of gene pools from CA-UPEC isolates with HA-UPEC are proposed to confirm these finding and discovering new aspects of this association.

Funder

This study was supported by vice chancellor for research and technology, Zabol University of medical sciences.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3