Towards reduction in bias in epidemic curves due to outcome misclassification through Bayesian analysis of time-series of laboratory test results: case study of COVID-19 in Alberta, Canada and Philadelphia, USA

Author:

Burstyn IgorORCID,Goldstein Neal D.,Gustafson Paul

Abstract

Abstract Background Despite widespread use, the accuracy of the diagnostic test for SARS-CoV-2 infection is poorly understood. The aim of our work was to better quantify misclassification errors in identification of true cases of COVID-19 and to study the impact of these errors in epidemic curves using publicly available surveillance data from Alberta, Canada and Philadelphia, USA. Methods We examined time-series data of laboratory tests for SARS-CoV-2 viral infection, the causal agent for COVID-19, to try to explore, using a Bayesian approach, the sensitivity and specificity of the diagnostic test. Results Our analysis revealed that the data were compatible with near-perfect specificity, but it was challenging to gain information about sensitivity. We applied these insights to uncertainty/bias analysis of epidemic curves under the assumptions of both improving and degrading sensitivity. If the sensitivity improved from 60 to 95%, the adjusted epidemic curves likely falls within the 95% confidence intervals of the observed counts. However, bias in the shape and peak of the epidemic curves can be pronounced, if sensitivity either degrades or remains poor in the 60–70% range. In the extreme scenario, hundreds of undiagnosed cases, even among the tested, are possible, potentially leading to further unchecked contagion should these cases not self-isolate. Conclusion The best way to better understand bias in the epidemic curves of COVID-19 due to errors in testing is to empirically evaluate misclassification of diagnosis in clinical settings and apply this knowledge to adjustment of epidemic curves.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Reference15 articles.

1. Goldstein ND, Burstyn I. On the importance of early testing even when imperfect in a pandemic such as COVID-19: OSF Preprints; 2020. https://doi.org/10.31219/osf.io/9pz4d.

2. World Health Organization. Global surveillance for COVID-19 caused by human infection with COVID-19 virus Interim guidance 20 March 2020. Available at: https://apps.who.int/iris/bitstream/handle/10665/331506/WHO-2019-nCoV-SurveillanceGuidance-2020.6-eng.pdf.

3. Saw Swee Hock School of Public Health COVID-19 Science Report. Available at: https://sph.nus.edu.sg/wp-content/uploads/2020/03/COVID-19-Science-Report-Diagnostics-13-Mar.pdf.

4. Fang Y. Zhang H1, Xie J. sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology. 2020;19:200432.

5. Ai T. Yang Z1, Hou H. correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020;26:200642.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3