Evaluation of Bayesian spatiotemporal infectious disease models for prospective surveillance analysis

Author:

Kim Joanne,Lawson Andrew B.,Neelon Brian,Korte Jeffrey E.,Eberth Jan M.,Chowell Gerardo

Abstract

Abstract Background COVID-19 brought enormous challenges to public health surveillance and underscored the importance of developing and maintaining robust systems for accurate surveillance. As public health data collection efforts expand, there is a critical need for infectious disease modeling researchers to continue to develop prospective surveillance metrics and statistical models to accommodate the modeling of large disease counts and variability. This paper evaluated different likelihoods for the disease count model and various spatiotemporal mean models for prospective surveillance. Methods We evaluated Bayesian spatiotemporal models, which are the foundation for model-based infectious disease surveillance metrics. Bayesian spatiotemporal mean models based on the Poisson and the negative binomial likelihoods were evaluated with the different lengths of past data usage. We compared their goodness of fit and short-term prediction performance with both simulated epidemic data and real data from the COVID-19 pandemic. Results The simulation results show that the negative binomial likelihood-based models show better goodness of fit results than Poisson likelihood-based models as deemed by smaller deviance information criteria (DIC) values. However, Poisson models yield smaller mean square error (MSE) and mean absolute one-step prediction error (MAOSPE) results when we use a shorter length of the past data such as 7 and 3 time periods. Real COVID-19 data analysis of New Jersey and South Carolina shows similar results for the goodness of fit and short-term prediction results. Negative binomial-based mean models showed better performance when we used the past data of 52 time periods. Poisson-based mean models showed comparable goodness of fit performance and smaller MSE and MAOSPE results when we used the past data of 7 and 3 time periods. Conclusion We evaluate these models and provide future infectious disease outbreak modeling guidelines for Bayesian spatiotemporal analysis. Our choice of the likelihood and spatiotemporal mean models was influenced by both historical data length and variability. With a longer length of past data usage and more over-dispersed data, the negative binomial likelihood shows a better model fit than the Poisson likelihood. However, as we use a shorter length of the past data for our surveillance analysis, the difference between the Poisson and the negative binomial models becomes smaller. In this case, the Poisson likelihood shows robust posterior mean estimate and short-term prediction results.

Funder

National Cancer Institute

National Institute On Minority Health And Health Disparities

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Reference44 articles.

1. South Carolina county-level data for COVID-19. Available from: https://scdhec.gov/covid19/covid-19-data/south-carolina-county-level-data-covid-19. Accessed 3 Jan 2022.

2. Google COVID-19 community mobility reports. Available from: https://www.google.com/covid19/mobility/. Accessed 6 Jan 2022.

3. Apple mobility trends reports. Available from: https://covid19.apple.com/mobility. Accessed 6 Jan 2022.

4. Thacker SB, Berkelman RL. Public health surveillance in the United States. Epidemiol Rev. 1988;10:164–90.

5. Lawson AB. Bayesian disease mapping: hierarchical modeling in spatial epidemiology. Boca Raton: CRC Press; 2018.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3