Consistent Healthcare Safety Recommendation System for Preventing Contagious Disease Infections in Human Crowds

Author:

Amoon Mohammed1ORCID,Altameem Torki1,Hashem Mohammed2

Affiliation:

1. Department of Computer Science, Community College, King Saud University, P.O. Box 28095, Riyadh 11437, Saudi Arabia

2. Department of Dental Health, College of Applied Medical Sciences, King Saud University, P.O. Box 12372, Riyadh 12372, Saudi Arabia

Abstract

The recent impact of COVID-19, as a contagious disease, led researchers to focus on designing and fabricating personal healthcare devices and systems. With the help of wearable sensors, sensing and communication technologies, and recommendation modules, personal healthcare systems were designed for ease of use. More specifically, personal healthcare systems were designed to provide recommendations for maintaining a safe distance and avoiding contagious disease spread after the COVID-19 pandemic. The personal recommendations are analyzed based on the wearable sensor signals and their consistency in sensing. This consistency varies with human movements or other activities that hike/cease the sensor values abruptly for a short period. Therefore, a consistency-focused recommendation system (CRS) for personal healthcare (PH) was designed in this research. The hardware sensing intervals for the system are calibrated per the conventional specifications from which abrupt changes can be observed. The changes are analyzed for their saturation and fluctuations observed from neighbors within the threshold distance. The saturation and fluctuation classifications are performed using random forest learning to differentiate the above data from the previously sensed healthy data. In this process, the saturated data and consistency data provide safety recommendations for the moving user. The consistency is verified for a series of intervals for the fluctuating sensed data. This alerts the user if the threshold distance for a contagious disease is violated. The proposed system was validated using a prototype model and experimental analysis through false rates, data analysis rates, and fluctuations.

Funder

Ministry of Education saudi arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3