P-values – a chronic conundrum

Author:

Gao JianORCID

Abstract

Abstract Background In medical research and practice, the p-value is arguably the most often used statistic and yet it is widely misconstrued as the probability of the type I error, which comes with serious consequences. This misunderstanding can greatly affect the reproducibility in research, treatment selection in medical practice, and model specification in empirical analyses. By using plain language and concrete examples, this paper is intended to elucidate the p-value confusion from its root, to explicate the difference between significance and hypothesis testing, to illuminate the consequences of the confusion, and to present a viable alternative to the conventional p-value. Main text The confusion with p-values has plagued the research community and medical practitioners for decades. However, efforts to clarify it have been largely futile, in part, because intuitive yet mathematically rigorous educational materials are scarce. Additionally, the lack of a practical alternative to the p-value for guarding against randomness also plays a role. The p-value confusion is rooted in the misconception of significance and hypothesis testing. Most, including many statisticians, are unaware that p-values and significance testing formed by Fisher are incomparable to the hypothesis testing paradigm created by Neyman and Pearson. And most otherwise great statistics textbooks tend to cobble the two paradigms together and make no effort to elucidate the subtle but fundamental differences between them. The p-value is a practical tool gauging the “strength of evidence” against the null hypothesis. It informs investigators that a p-value of 0.001, for example, is stronger than 0.05. However, p-values produced in significance testing are not the probabilities of type I errors as commonly misconceived. For a p-value of 0.05, the chance a treatment does not work is not 5%; rather, it is at least 28.9%. Conclusions A long-overdue effort to understand p-values correctly is much needed. However, in medical research and practice, just banning significance testing and accepting uncertainty are not enough. Researchers, clinicians, and patients alike need to know the probability a treatment will or will not work. Thus, the calibrated p-values (the probability that a treatment does not work) should be reported in research papers.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Reference50 articles.

1. Goodman S. A dirty dozen: twelve p-value misconceptions. Semin Hematol. 2008;45(3):135–40.

2. Hubbard R, Bayarri MR. Confusion over measures of evidence (p's) versus errors (α's) in classical statistical testing. Am Stat. 2003;57(3):171–82.

3. Windish DM, Huot SJ, Green ML. Medicine residents’ understanding of the biostatistics and results in the medical literature. JAMA. 2007;298:1010–22.

4. Berger JO, Sellke T. Testing a point null hypothesis: the irreconcilability of p-values and evidence (with discussions). J Am Stat Assoc. 1987;82(397):112–39.

5. Schervish MJ. P values: what they are and what they are not. Am Stat. 1996;50(3):203–6.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3