Extracellular Vesicle Protein Expression in Doped Bioactive Glasses: Further Insights Applying Anomaly Detection

Author:

Nascimben Mauro1ORCID,Abreu Hugo12ORCID,Manfredi Marcello3ORCID,Cappellano Giuseppe12ORCID,Chiocchetti Annalisa12ORCID,Rimondini Lia1ORCID

Affiliation:

1. Center for Translational Research on Autoimmune and Allergic Diseases, Department of Health Sciences, Università del Piemonte Orientale UPO, 28100 Novara, Italy

2. Interdisciplinary Research Center of Autoimmune Diseases, Department of Health Sciences, Università del Piemonte Orientale UPO, 28100 Novara, Italy

3. Biological Mass Spectrometry Laboratory, Department of Translational Medicine, Università del Piemonte Orientale UPO, 28100 Novara, Italy

Abstract

Proteomic analysis of extracellular vesicles presents several challenges due to the unique nature of these small membrane-bound structures. Alternative analyses could reveal outcomes hidden from standard statistics to explore and develop potential new biological hypotheses that may have been overlooked during the initial evaluation of the data. An analysis sequence focusing on deviating protein expressions from donors’ primary cells was performed, leveraging machine-learning techniques to analyze small datasets, and it has been applied to evaluate extracellular vesicles’ protein content gathered from mesenchymal stem cells cultured on bioactive glass discs doped or not with metal ions. The goal was to provide additional opportunities for detecting details between experimental conditions that are not entirely revealed with classic statistical inference, offering further insights regarding the experimental design and assisting the researchers in interpreting the outcomes. The methodology extracted a set of EV-related proteins whose differences between conditions could be partially explainable with statistics, suggesting the presence of other factors involved in the bioactive glasses’ interactions with tissues. Outlier identification of extracellular vesicles’ protein expression levels related to biomaterial preparation was instrumental in improving the interpretation of the experimental outcomes.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3