Variance constraints strongly influenced model performance in growth mixture modeling: a simulation and empirical study

Author:

Sijbrandij Jitske J.ORCID,Hoekstra Tialda,Almansa Josué,Peeters Margot,Bültmann Ute,Reijneveld Sijmen A.

Abstract

Abstract Background Growth Mixture Modeling (GMM) is commonly used to group individuals on their development over time, but convergence issues and impossible values are common. This can result in unreliable model estimates. Constraining variance parameters across classes or over time can solve these issues, but can also seriously bias estimates if variances differ. We aimed to determine which variance parameters can best be constrained in Growth Mixture Modeling. Methods To identify the variance constraints that lead to the best performance for different sample sizes, we conducted a simulation study and next verified our results with the TRacking Adolescent Individuals’ Lives Survey (TRAILS) cohort. Results If variance parameters differed across classes and over time, fitting a model without constraints led to the best results. No constrained model consistently performed well. However, the model that constrained the random effect variance and residual variances across classes consistently performed very poorly. For a small sample size (N = 100) all models showed issues. In TRAILS, the same model showed substantially different results from the other models and performed poorly in terms of model fit. Conclusions If possible, a Growth Mixture Model should be fit without any constraints on variance parameters. If not, we recommend to try different variance specifications and to not solely rely on the default model, which constrains random effect variances and residual variances across classes. The variance structure must always be reported Researchers should carefully follow the GRoLTS-Checklist when analyzing and reporting trajectory analyses.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3