Best practices for collecting repeated measures data using text messages

Author:

Shimoni Noa’aORCID,Nippita Siripanth,Castaño Paula M.

Abstract

Abstract Background Researchers and clinicians use text messages to collect data with the advantage of real time capture when compared with standard data collection methods. This article reviews project setup and management for successfully collecting patient-reported data through text messages. Methods We review our experience enrolling over 2600 participants in six clinical trials that used text messages to relay information or collect data. We also reviewed the literature on text messages used for repeated data collection. We classify recommendations according to common themes: the text message, the data submitted and the phone used. Results We present lessons learned and discuss how to create text message content, select a data collection platform with practical features, manage the data thoughtfully and consistently, and work with patients, participants and their phones to protect privacy. Researchers and clinicians should design text messages to include short, simple prompts and answer choices. They should decide whether and when to send reminders if participants do not respond and set parameters regarding when and how often to contact patients for missing data. Data collection platforms send, receive, and store messages. They can validate responses and send error messages. Researchers should develop a protocol to append and correct data in order to improve consistency with data handling. At the time of enrollment, researchers should ensure that participants can receive and respond to messages. Researchers should address privacy concerns and plan for service interruptions by obtaining alternate participant contact information and providing participants with a backup data collection method. Conclusions Careful planning and execution can reward clinicians and investigators with complete, timely and accurate data sets.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3