Evaluating sensitivity to classification uncertainty in latent subgroup effect analyses

Author:

Loh Wen Wei,Kim Jee-Seon

Abstract

Abstract Background Increasing attention is being given to assessing treatment effect heterogeneity among individuals belonging to qualitatively different latent subgroups. Inference routinely proceeds by first partitioning the individuals into subgroups, then estimating the subgroup-specific average treatment effects. However, because the subgroups are only latently associated with the observed variables, the actual individual subgroup memberships are rarely known with certainty in practice and thus have to be imputed. Ignoring the uncertainty in the imputed memberships precludes misclassification errors, potentially leading to biased results and incorrect conclusions. Methods We propose a strategy for assessing the sensitivity of inference to classification uncertainty when using such classify-analyze approaches for subgroup effect analyses. We exploit each individual’s typically nonzero predictive or posterior subgroup membership probabilities to gauge the stability of the resultant subgroup-specific average causal effects estimates over different, carefully selected subsets of the individuals. Because the membership probabilities are subject to sampling variability, we propose Monte Carlo confidence intervals that explicitly acknowledge the imprecision in the estimated subgroup memberships via perturbations using a parametric bootstrap. The proposal is widely applicable and avoids stringent causal or structural assumptions that existing bias-adjustment or bias-correction methods rely on. Results Using two different publicly available real-world datasets, we illustrate how the proposed strategy supplements existing latent subgroup effect analyses to shed light on the potential impact of classification uncertainty on inference. First, individuals are partitioned into latent subgroups based on their medical and health history. Then within each fixed latent subgroup, the average treatment effect is assessed using an augmented inverse propensity score weighted estimator. Finally, utilizing the proposed sensitivity analysis reveals different subgroup-specific effects that are mostly insensitive to potential misclassification. Conclusions Our proposed sensitivity analysis is straightforward to implement, provides both graphical and numerical summaries, and readily permits assessing the sensitivity of any machine learning-based causal effect estimator to classification uncertainty. We recommend making such sensitivity analyses more routine in latent subgroup effect analyses.

Funder

Universiteit Gent

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3