History-restricted marginal structural model and latent class growth analysis of treatment trajectories for a time-dependent outcome

Author:

Diop Awa1ORCID,Sirois Caroline2,Guertin Jason R.3,Schnitzer Mireille E.4ORCID,Brophy James M.5,Blais Claudia6,Talbot Denis1

Affiliation:

1. Département de médecine sociale et préventive , Université Laval, Centre de recherche du CHU de Québec – Université Laval, Axe santé des populations et pratiques optimales en santé , Québec , QC , Canada

2. Faculté de pharmacie , Université Laval, Centre de recherche du CHU de Québec – Université Laval, Axe santé des populations et pratiques optimales en santé , Québec , QC , Canada

3. Tissue Engineering Laboratory (LOEX), Département de médecine sociale et préventive , Université Laval, Centre de recherche du CHU de Québec – Université Laval, Axe santé des populations et pratiques optimales en santé , Québec , QC , Canada

4. Faculté de pharmacie et Département de médecine sociale et préventive, ESPUM, Department of Epidemiology, Biostatistics, and Occupational Health , Université de Montréal, McGill University , Montréal , QC , Canada

5. Hospital Center for Health Outcomes Research , McGill University , Montréal , QC , Canada

6. Institut national de santé publique du Québec (INSPQ) , Québec , QC , Canada

Abstract

Abstract In previous work, we introduced a framework that combines latent class growth analysis (LCGA) with marginal structural models (LCGA-MSM). LCGA-MSM first summarizes the numerous time-varying treatment patterns into a few trajectory groups and then allows for a population-level causal interpretation of the group differences. However, the LCGA-MSM framework is not suitable when the outcome is time-dependent. In this study, we propose combining a nonparametric history-restricted marginal structural model (HRMSM) with LCGA. HRMSMs can be seen as an application of standard MSMs on multiple time intervals. To the best of our knowledge, we also present the first application of HRMSMs with a time-to-event outcome. It was previously noted that HRMSMs could pose interpretation problems in survival analysis when either targeting a hazard ratio or a survival curve. We propose a causal parameter that bypasses these interpretation challenges. We consider three different estimators of the parameters: inverse probability of treatment weighting (IPTW), g-computation, and a pooled longitudinal targeted maximum likelihood estimator (pooled LTMLE). We conduct simulation studies to measure the performance of the proposed LCGA-HRMSM. For all scenarios, we obtain unbiased estimates when using either g-computation or pooled LTMLE. IPTW produced estimates with slightly larger bias in some scenarios. Overall, all approaches have good coverage of the 95 % confidence interval. We applied our approach to a population of older Quebecers composed of 57,211 statin initiators and found that a greater adherence to statins was associated with a lower combined risk of cardiovascular disease or all-cause mortality.

Funder

Canadian Institutes of Health Research

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3