Author:
Fan Jason,Chan Skylar,Patro Rob
Abstract
Abstract
Background
There has been rapid development of probabilistic models and inference methods for transcript abundance estimation from RNA-seq data. These models aim to accurately estimate transcript-level abundances, to account for different biases in the measurement process, and even to assess uncertainty in resulting estimates that can be propagated to subsequent analyses. The assumed accuracy of the estimates inferred by such methods underpin gene expression based analysis routinely carried out in the lab. Although hyperparameter selection is known to affect the distributions of inferred abundances (e.g. producing smooth versus sparse estimates), strategies for performing model selection in experimental data have been addressed informally at best.
Results
We derive perplexity for evaluating abundance estimates on fragment sets directly. We adapt perplexity from the analogous metric used to evaluate language and topic models and extend the metric to carefully account for corner cases unique to RNA-seq. In experimental data, estimates with the best perplexity also best correlate with qPCR measurements. In simulated data, perplexity is well behaved and concordant with genome-wide measurements against ground truth and differential expression analysis. Furthermore, we demonstrate theoretically and experimentally that perplexity can be computed for arbitrary transcript abundance estimation models.
Conclusions
Alongside the derivation and implementation of perplexity for transcript abundance estimation, our study is the first to make possible model selection for transcript abundance estimation on experimental data in the absence of ground truth.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology