Abstract
AbstractThe rearrangement distance is a method to compare genomes of different species. Such distance is the number of rearrangement events necessary to transform one genome into another. Two commonly studied events are the transposition, which exchanges two consecutive blocks of the genome, and the reversal, which reverts a block of the genome. When dealing with such problems, seminal works represented genomes as sequences of genes without repetition. More realistic models started to consider gene repetition or the presence of intergenic regions, sequences of nucleotides between genes and in the extremities of the genome. This work explores the transposition and reversal events applied in a genome representation considering both gene repetition and intergenic regions. We define two problems called Minimum Common Intergenic String Partition and Reverse Minimum Common Intergenic String Partition. Using a relation with these two problems, we show a $$\Theta \left( k \right)$$
Θ
k
-approximation for the Intergenic Transposition Distance, the Intergenic Reversal Distance, and the Intergenic Reversal and Transposition Distance problems, where k is the maximum number of copies of a gene in the genomes. Our practical experiments on simulated genomes show that the use of partitions improves the estimates for the distances.
Funder
conselho nacional de desenvolvimento científico e tecnológico
coordenação de aperfeiçoamento de pessoal de nível superior
fundação de amparo à pesquisa do estado de são paulo
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献