Approximation algorithm for rearrangement distances considering repeated genes and intergenic regions

Author:

Siqueira GabrielORCID,Alexandrino Alexsandro OliveiraORCID,Oliveira Andre RodriguesORCID,Dias ZanoniORCID

Abstract

AbstractThe rearrangement distance is a method to compare genomes of different species. Such distance is the number of rearrangement events necessary to transform one genome into another. Two commonly studied events are the transposition, which exchanges two consecutive blocks of the genome, and the reversal, which reverts a block of the genome. When dealing with such problems, seminal works represented genomes as sequences of genes without repetition. More realistic models started to consider gene repetition or the presence of intergenic regions, sequences of nucleotides between genes and in the extremities of the genome. This work explores the transposition and reversal events applied in a genome representation considering both gene repetition and intergenic regions. We define two problems called Minimum Common Intergenic String Partition and Reverse Minimum Common Intergenic String Partition. Using a relation with these two problems, we show a $$\Theta \left( k \right)$$ Θ k -approximation for the Intergenic Transposition Distance, the Intergenic Reversal Distance, and the Intergenic Reversal and Transposition Distance problems, where k is the maximum number of copies of a gene in the genomes. Our practical experiments on simulated genomes show that the use of partitions improves the estimates for the distances.

Funder

conselho nacional de desenvolvimento científico e tecnológico

coordenação de aperfeiçoamento de pessoal de nível superior

fundação de amparo à pesquisa do estado de são paulo

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3